These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38498332)

  • 1. Iodide-umpolung catalytic system for non-traditional amide coupling from nitroalkanes and amines.
    Chen CL; Huang TS; Chang PH; Hsu CS
    Org Biomol Chem; 2024 Apr; 22(14):2780-2790. PubMed ID: 38498332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Umpolung amide synthesis using substoichiometric N-iodosuccinimide (NIS) and oxygen as a terminal oxidant.
    Schwieter KE; Shen B; Shackleford JP; Leighty MW; Johnston JN
    Org Lett; 2014 Sep; 16(18):4714-7. PubMed ID: 25198239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Umpolung reactivity in amide and peptide synthesis.
    Shen B; Makley DM; Johnston JN
    Nature; 2010 Jun; 465(7301):1027-32. PubMed ID: 20577205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative Amidation of Nitroalkanes with Amine Nucleophiles using Molecular Oxygen and Iodine.
    Li J; Lear MJ; Kawamoto Y; Umemiya S; Wong AR; Kwon E; Sato I; Hayashi Y
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):12986-90. PubMed ID: 26349836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic Hypervalent Iodine Reagents: Enabling Tools for Bond Disconnection via Reactivity Umpolung.
    Hari DP; Caramenti P; Waser J
    Acc Chem Res; 2018 Dec; 51(12):3212-3225. PubMed ID: 30485071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-specific Umpolung amidation of carboxylic acids via triplet synergistic catalysis.
    Ning Y; Wang S; Li M; Han J; Zhu C; Xie J
    Nat Commun; 2021 Jul; 12(1):4637. PubMed ID: 34330910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodanyl Radical Catalysis.
    Maity A; Frey BL; Powers DC
    Acc Chem Res; 2023 Jul; 56(14):2026-2036. PubMed ID: 37409761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic Aerobic N-Nitrosation by Secondary Nitroalkanes in Water: A Tandem Diazotization of Aryl Amines and Azo Coupling.
    Ramesh K; Kim HY; Oh K
    Org Lett; 2023 Jan; 25(2):449-453. PubMed ID: 36626165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective N-Heterocyclic Carbene Catalyzed α-Oxidative Coupling of Enals with Carboxylic Acids Using an Iodine(III) Reagent.
    Xu YY; Gao ZH; Li CB; Ye S
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202218362. PubMed ID: 36651829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An α-Cyclopropanation of Carbonyl Derivatives by Oxidative Umpolung.
    Bauer A; Di Mauro G; Li J; Maulide N
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):18208-18212. PubMed ID: 32808419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity Umpolung of Tertiary Amide Enabled by Catalytic Reductive Stannylation.
    Shi Q; Liu WH
    Angew Chem Int Ed Engl; 2023 Sep; 62(37):e202309567. PubMed ID: 37479672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bifunctional heterogeneous catalysis of silica-alumina-supported tertiary amines with controlled acid-base interactions for efficient 1,4-addition reactions.
    Motokura K; Tanaka S; Tada M; Iwasawa Y
    Chemistry; 2009 Oct; 15(41):10871-9. PubMed ID: 19746475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of Substituted Alkylpyrroles via Samarium-Catalyzed Three-Component Coupling Reaction of Aldehydes, Amines, and Nitroalkanes.
    Shiraishi H; Nishitani T; Sakaguchi S; Ishii Y
    J Org Chem; 1998 Sep; 63(18):6234-6238. PubMed ID: 11672254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Amide Coupling from Functionally Diverse Alcohols and Amines Using Aerobic Copper/Nitroxyl Catalysis.
    Piszel PE; Vasilopoulos A; Stahl SS
    Angew Chem Int Ed Engl; 2019 Aug; 58(35):12211-12215. PubMed ID: 31206988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic asymmetric umpolung reactions of imines
    Hussain Y; Chauhan P
    Org Biomol Chem; 2021 May; 19(19):4193-4212. PubMed ID: 33870977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a General Protocol for Catalytic Oxidative Transformations Using Electrochemically Generated Hypervalent Iodine Species.
    Elsherbini M; Moran WJ
    J Org Chem; 2023 Feb; 88(3):1424-1433. PubMed ID: 36689352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of Oxidative Amidation of Nitroalkanes with Oxygen and Amine Nucleophiles by Using Electrophilic Iodine.
    Li J; Lear MJ; Kwon E; Hayashi Y
    Chemistry; 2016 Apr; 22(16):5538-42. PubMed ID: 26938791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Strategies for the Functionalization of Carbonyl Derivatives via α-Umpolung: From Enolates to Enolonium Ions.
    Spieß P; Shaaban S; Kaiser D; Maulide N
    Acc Chem Res; 2023 Jun; 56(12):1634-1644. PubMed ID: 37226674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents.
    Shetgaonkar SE; Raju A; China H; Takenaga N; Dohi T; Singh FV
    Front Chem; 2022; 10():909250. PubMed ID: 35844643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trifluoromethylation of Secondary Nitroalkanes.
    Gietter-Burch AAS; Devannah V; Watson DA
    Org Lett; 2017 Jun; 19(11):2957-2960. PubMed ID: 28535057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.