These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 38498446)
21. Molecular and functional characterization of three odorant binding proteins from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricide). Chen XL; Su L; Li BL; Li GW; Wu JX Arch Insect Biochem Physiol; 2018 Jun; 98(2):e21456. PubMed ID: 29569371 [TBL] [Abstract][Full Text] [Related]
22. CLONING, EXPRESSION, AND FUNCTIONAL ANALYSIS OF THREE ODORANT-BINDING PROTEINS OF THE ORIENTAL FRUIT MOTH, Grapholita molesta (BUSCK) (LEPIDOPTERA: TORTRICIDAE). Li GW; Zhang Y; Li YP; Wu JX; Xu XL Arch Insect Biochem Physiol; 2016 Feb; 91(2):67-87. PubMed ID: 26609640 [TBL] [Abstract][Full Text] [Related]
24. Three chemosensory proteins from the rice leaf folder Cnaphalocrocis medinalis involved in host volatile and sex pheromone reception. Zeng FF; Liu H; Zhang A; Lu ZX; Leal WS; Abdelnabby H; Wang MQ Insect Mol Biol; 2018 Dec; 27(6):710-723. PubMed ID: 29802739 [TBL] [Abstract][Full Text] [Related]
25. Odorant-binding proteins and chemosensory proteins potentially involved in host plant recognition in the Asian citrus psyllid, Diaphorina citri. Zhang H; Chen JL; Lin JH; Lin JT; Wu ZZ Pest Manag Sci; 2020 Aug; 76(8):2609-2618. PubMed ID: 32083388 [TBL] [Abstract][Full Text] [Related]
26. Moth sex pheromones affect interspecific competition among sympatric species and possibly population distribution by modulating pre-mating behavior. Cheng J; Chen Q; Guo Q; Du Y Insect Sci; 2023 Apr; 30(2):501-516. PubMed ID: 35900899 [TBL] [Abstract][Full Text] [Related]
27. [Monitoring of Cnaphalocrocis medinalis Guenee based on canopy reflectance]. Sun H; Li MZ; Zhou ZY; Liu G; Luo XW Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1080-3. PubMed ID: 20545166 [TBL] [Abstract][Full Text] [Related]
28. Molecular recognition between volatile molecules and odorant binding proteins 7 by homology modeling, molecular docking and molecular dynamics simulation. Wang R; Duan L; Zhao B; Zheng Y; Chen L J Sci Food Agric; 2024 Sep; 104(12):7592-7602. PubMed ID: 38767431 [TBL] [Abstract][Full Text] [Related]
29. Characterization, Knockdown and Parental Effect of Shakeel M; Du J; Li SW; Zhou YJ; Sarwar N; Bukhari SAH Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33114530 [TBL] [Abstract][Full Text] [Related]
30. Insecticide susceptibility of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) in China. Zheng X; Ren X; Su J J Econ Entomol; 2011 Apr; 104(2):653-8. PubMed ID: 21510218 [TBL] [Abstract][Full Text] [Related]
31. Characterization of the complete mitochondrial genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae). Chai HN; Du YZ; Zhai BP Int J Biol Sci; 2012; 8(4):561-79. PubMed ID: 22532789 [TBL] [Abstract][Full Text] [Related]
32. Structural characteristics and phylogenetic analysis of the mitochondrial genome of the rice leafroller, Cnaphalocrocis medinalis (Lepidoptera: Crambidae). Yin Y; Qu F; Yang Z; Zhang X; Yue B Mol Biol Rep; 2014 Feb; 41(2):1109-16. PubMed ID: 24379079 [TBL] [Abstract][Full Text] [Related]
33. The molecular identification, odor binding characterization, and immunolocalization of odorant-binding proteins in Liriomyza trifolii. Zhang Q; Li Z; Chen D; Wu S; Wang H; Li Y; Lei Z Pestic Biochem Physiol; 2022 Feb; 181():105016. PubMed ID: 35082039 [TBL] [Abstract][Full Text] [Related]
34. Effects of Host Plant and Insect Generation on Shaping of the Gut Microbiota in the Rice Leaffolder, Yang Y; Liu X; Xu H; Liu Y; Lu Z Front Microbiol; 2022; 13():824224. PubMed ID: 35479615 [TBL] [Abstract][Full Text] [Related]
35. Functional differentiation of two general-odorant binding proteins in Hyphantria cunea (Drury) (Lepidoptera: Erebidae). Zhang X; Purba ER; Sun J; Zhang QH; Dong SL; Zhang YN; He P; Mang D; Zhang L Pest Manag Sci; 2023 Sep; 79(9):3312-3325. PubMed ID: 37103977 [TBL] [Abstract][Full Text] [Related]
36. Host plant recognition by two odorant-binding proteins in Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Huang Y; Hu W; Hou YM Pest Manag Sci; 2023 Nov; 79(11):4521-4534. PubMed ID: 37421364 [TBL] [Abstract][Full Text] [Related]
37. Two Odorant-Binding Proteins of the Dark Black Chafer ( Ju Q; Li X; Guo XQ; Du L; Shi CR; Qu MJ Front Physiol; 2018; 9():769. PubMed ID: 30072905 [TBL] [Abstract][Full Text] [Related]
38. Analyses of structural dynamics revealed flexible binding mechanism for the Agrilus mali odorant binding protein 8 towards plant volatiles. Li D; Li C; Liu D Pest Manag Sci; 2021 Apr; 77(4):1642-1653. PubMed ID: 33202109 [TBL] [Abstract][Full Text] [Related]
39. Two classic OBPs modulate the responses of female Holotrichia oblita to three major ester host plant volatiles. Wei HS; Qin JH; Cao YZ; Li KB; Yin J Insect Mol Biol; 2021 Aug; 30(4):390-399. PubMed ID: 33822423 [TBL] [Abstract][Full Text] [Related]
40. Inheritance of chlorantraniliprole resistance and fitness costs in a field population of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) in China. Zhang YC; Ling Y; Dong BB; Li HS; He YK; Huang Q; Long LP; Wu SF; Gao CF Pest Manag Sci; 2024 Sep; ():. PubMed ID: 39305064 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]