BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38498471)

  • 1. Understanding Rejection Mechanisms of Trace Organic Contaminants by Polyamide Membranes via Data-Knowledge Codriven Machine Learning.
    Wang H; Zeng J; Dai R; Wang Z
    Environ Sci Technol; 2024 Apr; 58(13):5878-5888. PubMed ID: 38498471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of pharmaceuticals onto isolated polyamide active layer of NF/RO membranes.
    Liu YL; Wang XM; Yang HW; Xie YF
    Chemosphere; 2018 Jun; 200():36-47. PubMed ID: 29471167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence.
    Jeong N; Epsztein R; Wang R; Park S; Lin S; Tong T
    Environ Sci Technol; 2023 Nov; 57(46):17851-17862. PubMed ID: 36917705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace organic contaminant rejection by aquaporin forward osmosis membrane: Transport mechanisms and membrane stability.
    Xie M; Luo W; Guo H; Nghiem LD; Tang CY; Gray SR
    Water Res; 2018 Apr; 132():90-98. PubMed ID: 29306703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2014 Feb; 49():265-74. PubMed ID: 24345822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Polyamide Based Nanofiltration Membranes Using Green Metal-Organic Coordination Complexes: Implications for the Removal of Trace Organic Contaminants.
    Guo H; Peng LE; Yao Z; Yang Z; Ma X; Tang CY
    Environ Sci Technol; 2019 Mar; 53(5):2688-2694. PubMed ID: 30742424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes.
    Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G
    J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
    Yang L; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Jun; 116():116-125. PubMed ID: 28324708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the mechanisms of trace organic contaminant removal by high retention membrane bioreactors: a critical review.
    Asif MB; Ansari AJ; Chen SS; Nghiem LD; Price WE; Hai FI
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34085-34100. PubMed ID: 30259242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T
    Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models.
    Zhu T; Zhang Y; Tao C; Chen W; Cheng H
    Sci Total Environ; 2023 Jan; 857(Pt 1):159348. PubMed ID: 36228787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the effect of charge density in the active layers of reverse osmosis and nanofiltration membranes on the rejection of arsenic(III) and potassium iodide.
    Coronell O; Mi B; Mariñas BJ; Cahill DG
    Environ Sci Technol; 2013 Jan; 47(1):420-8. PubMed ID: 23199291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on artificial water channels incorporated polyamide membranes for water purification: Transport mechanisms and performance.
    Qiu Z; Chen J; Zeng J; Dai R; Wang Z
    Water Res; 2023 Dec; 247():120774. PubMed ID: 37898000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of pharmaceutically active compounds from water sources using nanofiltration and reverse osmosis membranes: Comparison of removal efficiencies and in-depth analysis of rejection mechanisms.
    Matin A; Jillani SMS; Baig U; Ihsanullah I; Alhooshani K
    J Environ Manage; 2023 Jul; 338():117682. PubMed ID: 37003228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of commercial nanofiltration and reverse osmosis membrane filtration to remove per-and polyfluoroalkyl substances (PFAS): Effects of transmembrane pressures and water matrices.
    Ma Q; Lei Q; Liu F; Song Z; Khusid B; Zhang W
    Water Environ Res; 2024 Feb; 96(2):e10983. PubMed ID: 38291820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes.
    Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H
    Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of trace organic compounds through novel forward osmosis membranes: Role of membrane properties and the draw solution.
    Sauchelli M; Pellegrino G; D'Haese A; Rodríguez-Roda I; Gernjak W
    Water Res; 2018 Sep; 141():65-73. PubMed ID: 29778066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of organic contaminants by RO and NF membranes.
    Yoon Y; Lueptow RM
    J Memb Sci; 2005 Sep; 261(1-2):76-86. PubMed ID: 16134262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.