BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 38498506)

  • 1. A single base pair substitution in zebrafish distinguishes between innate and acute startle behavior regulation.
    Ortiz EA; Campbell PD; Nelson JC; Granato M
    PLoS One; 2024; 19(3):e0300529. PubMed ID: 38498506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single base pair substitution on Chromosome 25 in zebrafish distinguishes between development and acute regulation of behavioral thresholds.
    Ortiz EA; Campbell PD; Nelson JC; Granato M
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.
    Marsden KC; Jain RA; Wolman MA; Echeverry FA; Nelson JC; Hayer KE; Miltenberg B; Pereda AE; Granato M
    Cell Rep; 2018 Apr; 23(3):878-887. PubMed ID: 29669291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay.
    Bhandiwad AA; Zeddies DG; Raible DW; Rubel EW; Sisneros JA
    J Exp Biol; 2013 Sep; 216(Pt 18):3504-13. PubMed ID: 23966590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. cacna2d3, a voltage-gated calcium channel subunit, functions in vertebrate habituation learning and the startle sensitivity threshold.
    Santistevan NJ; Nelson JC; Ortiz EA; Miller AH; Kenj Halabi D; Sippl ZA; Granato M; Grinblat Y
    PLoS One; 2022; 17(7):e0270903. PubMed ID: 35834485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyfip2 controls the acoustic startle threshold through FMRP, actin polymerization, and GABA
    Deslauriers JC; Ghotkar RP; Russ LA; Jarman JA; Martin RM; Tippett RG; Sumathipala SH; Burton DF; Cole DC; Marsden KC
    bioRxiv; 2024 Feb; ():. PubMed ID: 38187577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Hair Cell Regeneration in Zebrafish Larvae by Measuring and Quantifying the Startle Responses.
    Wang C; Zhong Z; Sun P; Zhong H; Li H; Chen F
    Neural Plast; 2017; 2017():8283075. PubMed ID: 28250994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated elicitation of the acoustic startle reflex leads to sensitisation in subsequent avoidance behaviour and induces fear conditioning.
    Götz T; Janik VM
    BMC Neurosci; 2011 Apr; 12():30. PubMed ID: 21489285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae).
    Libersat F; Hoy RR
    J Comp Physiol A; 1991 Oct; 169(4):507-14. PubMed ID: 1779422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise-Induced Hypersensitization of the Acoustic Startle Response in Larval Zebrafish.
    Bhandiwad AA; Raible DW; Rubel EW; Sisneros JA
    J Assoc Res Otolaryngol; 2018 Dec; 19(6):741-752. PubMed ID: 30191425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A forward genetic screen identifies Dolk as a regulator of startle magnitude through the potassium channel subunit Kv1.1.
    Meserve JH; Nelson JC; Marsden KC; Hsu J; Echeverry FA; Jain RA; Wolman MA; Pereda AE; Granato M
    PLoS Genet; 2021 Jun; 17(6):e1008943. PubMed ID: 34061829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmentation of the rat's acoustic startle reflex by nonreflexogenic stimuli.
    Hammond GR; Leitner DS
    Behav Neurosci; 1990 Dec; 104(6):841-8. PubMed ID: 2285483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcellular Dissection of a Simple Neural Circuit: Functional Domains of the Mauthner-Cell During Habituation.
    Bátora D; Zsigmond Á; Lőrincz IZ; Szegvári G; Varga M; Málnási-Csizmadia A
    Front Neural Circuits; 2021; 15():648487. PubMed ID: 33828462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in response to an acoustic startle stimulus among forty-six rat strains.
    Glowa JR; Hansen CT
    Behav Genet; 1994 Jan; 24(1):79-84. PubMed ID: 8192623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental Exposure to Domoic Acid Disrupts Startle Response Behavior and Circuitry in Zebrafish.
    Panlilio JM; Jones IT; Salanga MC; Aluru N; Hahn ME
    Toxicol Sci; 2021 Aug; 182(2):310-326. PubMed ID: 34097058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CNS Hypomyelination Disrupts Axonal Conduction and Behavior in Larval Zebrafish.
    Madden ME; Suminaite D; Ortiz E; Early JJ; Koudelka S; Livesey MR; Bianco IH; Granato M; Lyons DA
    J Neurosci; 2021 Nov; 41(44):9099-9111. PubMed ID: 34544838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of enhanced acoustic startle response by noise exposure: dependence on exposure conditions and testing parameters and possible relevance to hyperacusis.
    Salloum RH; Yurosko C; Santiago L; Sandridge SA; Kaltenbach JA
    PLoS One; 2014; 9(10):e111747. PubMed ID: 25360877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Startle, pre-pulse sensitization, and habituation in zebrafish.
    Kirshenbaum AP; Chabot E; Gibney N
    J Neurosci Methods; 2019 Feb; 313():54-59. PubMed ID: 30586568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of the glutamate receptor epsilon2 and delta2 subunits in the potentiation and prepulse inhibition of the acoustic startle reflex.
    Takeuchi T; Kiyama Y; Nakamura K; Tsujita M; Matsuda I; Mori H; Munemoto Y; Kuriyama H; Natsume R; Sakimura K; Mishina M
    Eur J Neurosci; 2001 Jul; 14(1):153-60. PubMed ID: 11488959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants.
    Nicolson T; Rüsch A; Friedrich RW; Granato M; Ruppersberg JP; Nüsslein-Volhard C
    Neuron; 1998 Feb; 20(2):271-83. PubMed ID: 9491988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.