These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38498733)

  • 1. Strain Solitons in an Epitaxially Strained van der Waals-like Material.
    Dong JT; Inbar HS; Dempsey CP; Engel AN; Palmstrøm CJ
    Nano Lett; 2024 Apr; 24(15):4493-4497. PubMed ID: 38498733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the van der Waals Epitaxy in the Case of (Bi
    Mulder L; Wielens DH; Birkhölzer YA; Brinkman A; Concepción O
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern Development and Control of Strained Solitons in Graphene Bilayers.
    Feng S; Xu Z
    Nano Lett; 2021 Feb; 21(4):1772-1777. PubMed ID: 33529036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain and atomic stacking of bismuth thin film in its quasi-van der Waals epitaxy on (111) Si substrate.
    Wu CH; Chou C; Lin HH
    Sci Rep; 2023 Nov; 13(1):19769. PubMed ID: 37957212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobile Kink Solitons in a Van der Waals Charge-Density-Wave Layer.
    Lee J; Park JW; Cho GY; Yeom HW
    Adv Mater; 2023 Jul; 35(29):e2300160. PubMed ID: 37058741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically Robust Interface at Metal/Muscovite Quasi van der Waals Epitaxy.
    Chen JW; Wei YG; Lo HY; Lu S; Chen YC; Lei CF; Liu PL; Yu P; Tsou NT; Yasuhara A; Wu WW; Chu YH
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47715-47724. PubMed ID: 37769228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.
    Kim ES; Hwang JY; Lee KH; Ohta H; Lee YH; Kim SW
    Adv Mater; 2017 Feb; 29(8):. PubMed ID: 27996181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.
    Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S
    ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Large-Scale Ga
    Min JH; Li KH; Kim YH; Min JW; Kang CH; Kim KH; Lee JS; Lee KJ; Jeong SM; Lee DS; Bae SY; Ng TK; Ooi BS
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13410-13418. PubMed ID: 33709688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. van der Waals Epitaxy of Antimony Islands, Sheets, and Thin Films on Single-Crystalline Graphene.
    Sun X; Lu Z; Xiang Y; Wang Y; Shi J; Wang GC; Washington MA; Lu TM
    ACS Nano; 2018 Jun; 12(6):6100-6108. PubMed ID: 29746775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soliton superlattices in twisted hexagonal boron nitride.
    Ni GX; Wang H; Jiang BY; Chen LX; Du Y; Sun ZY; Goldflam MD; Frenzel AJ; Xie XM; Fogler MM; Basov DN
    Nat Commun; 2019 Sep; 10(1):4360. PubMed ID: 31554808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. van der Waals epitaxial growth of atomically thin Bi₂Se₃ and thickness-dependent topological phase transition.
    Xu S; Han Y; Chen X; Wu Z; Wang L; Han T; Ye W; Lu H; Long G; Wu Y; Lin J; Cai Y; Ho KM; He Y; Wang N
    Nano Lett; 2015 Apr; 15(4):2645-51. PubMed ID: 25807151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth, structure, and morphology of van der Waals epitaxy Cr
    Wang X; Zhou H; Bai L; Wang HQ
    Discov Nano; 2023 Feb; 18(1):23. PubMed ID: 36826603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous Relaxation of Heteroepitaxial Thin Films by van der Waals-Like Bonding on Te-Terminated Sapphire Substrates.
    Jovanovic SM; El-Sherif HM; Bassim ND; Preston JS
    Small; 2020 Nov; 16(45):e2004437. PubMed ID: 33078550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution phase van der Waals epitaxy of ZnO wire arrays.
    Zhu Y; Zhou Y; Utama MI; de la Mata M; Zhao Y; Zhang Q; Peng B; Magen C; Arbiol J; Xiong Q
    Nanoscale; 2013 Aug; 5(16):7242-9. PubMed ID: 23744301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Van der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC.
    Ben Jabra Z; Abel M; Fabbri F; Aqua JN; Koudia M; Michon A; Castrucci P; Ronda A; Vach H; De Crescenzi M; Berbezier I
    ACS Nano; 2022 Apr; 16(4):5920-5931. PubMed ID: 35294163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures.
    Heilmann M; Prikhodko AS; Hanke M; Sabelfeld A; Borgardt NI; Lopes JMJ
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8897-8907. PubMed ID: 31971775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peculiar alignment and strain of 2D WSe
    Mortelmans W; El Kazzi S; Nalin Mehta A; Vanhaeren D; Conard T; Meersschaut J; Nuytten T; De Gendt S; Heyns M; Merckling C
    Nanotechnology; 2019 Nov; 30(46):465601. PubMed ID: 31426041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal Oriented van der Waals Epitaxy of 1D Cyanide Chains on Hexagonal 2D Crystals.
    Lee Y; Koo J; Lee S; Yoon JY; Kim K; Jang M; Jang J; Choe J; Li BW; Le CT; Ullah F; Kim YS; Hwang JY; Lee WC; Ruoff RS; Cheong H; Cheon J; Lee H; Kim K
    Adv Sci (Weinh); 2020 Feb; 7(4):1900757. PubMed ID: 32099750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy.
    Zuo Z; Xu Z; Zheng R; Khanaki A; Zheng JG; Liu J
    Sci Rep; 2015 Oct; 5():14760. PubMed ID: 26442629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.