These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38498813)

  • 21. Output-only parameter identification of a colored-noise-driven Van-der-Pol oscillator: Thermoacoustic instabilities as an example.
    Bonciolini G; Boujo E; Noiray N
    Phys Rev E; 2017 Jun; 95(6-1):062217. PubMed ID: 28709231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating thermoacoustic instability mitigation dynamics with a Kuramoto model for flamelet oscillators.
    Dutta AK; Ramachandran G; Chaudhuri S
    Phys Rev E; 2019 Mar; 99(3-1):032215. PubMed ID: 30999463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preventing a global transition to thermoacoustic instability by targeting local dynamics.
    George NB; Raghunathan M; Unni VR; Sujith RI; Kurths J; Surovyatkina E
    Sci Rep; 2022 Jun; 12(1):9305. PubMed ID: 35661119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of degeneration process in combustion instability based on dynamical systems theory.
    Gotoda H; Okuno Y; Hayashi K; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052906. PubMed ID: 26651761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutual synchronization of two flame-driven thermoacoustic oscillators: Dissipative and time-delayed coupling effects.
    Moon K; Guan Y; Li LKB; Kim KT
    Chaos; 2020 Feb; 30(2):023110. PubMed ID: 32113251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of closed-loop active control method for suppression of thermoacoustic instability using radial air micro-jets.
    Deshmukh N; Ansari A; Kumar P; George AV; Thomas FJ; George MS
    MethodsX; 2023; 10():102123. PubMed ID: 37007624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of background noises on nonlinear dynamics of a modelled thermoacoustic combustor.
    Li X; Zhao D; Li X
    J Acoust Soc Am; 2018 Jan; 143(1):60. PubMed ID: 29390790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coherence resonance in a chemical excitable system driven by coloured noise.
    Beato V; SendiƱa-Nadal I; Gerdes I; Engel H
    Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):381-95. PubMed ID: 17673411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time Series and Spectral Analysis of Thermoacoustic Oscillations for Propane-Oxyfuel Combustion in a Swirl-Stabilized, Nonpremixed Combustor.
    Talal Q; Abubakar Z; Shakeel MR; AlSwat MS; Mokheimer EMA
    ACS Omega; 2023 Oct; 8(39):36053-36064. PubMed ID: 37810688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early detection of thermoacoustic combustion oscillations using a methodology combining statistical complexity and machine learning.
    Hachijo T; Masuda S; Kurosaka T; Gotoda H
    Chaos; 2019 Oct; 29(10):103123. PubMed ID: 31675849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of time-delay and dissipative coupling on amplitude death in coupled thermoacoustic oscillators.
    Thomas N; Mondal S; Pawar SA; Sujith RI
    Chaos; 2018 Mar; 28(3):033119. PubMed ID: 29604646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamical states and bifurcations in coupled thermoacoustic oscillators.
    Srikanth S; Pawar SA; Manoj K; Sujith RI
    Chaos; 2022 Jul; 32(7):073129. PubMed ID: 35907737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection and control of combustion instability based on the concept of dynamical system theory.
    Gotoda H; Shinoda Y; Kobayashi M; Okuno Y; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022910. PubMed ID: 25353548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory.
    Murayama S; Kinugawa H; Tokuda IT; Gotoda H
    Phys Rev E; 2018 Feb; 97(2-1):022223. PubMed ID: 29548163
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Route to chaos for combustion instability in ducted laminar premixed flames.
    Kabiraj L; Saurabh A; Wahi P; Sujith RI
    Chaos; 2012 Jun; 22(2):023129. PubMed ID: 22757536
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interplay between random fluctuations and rate dependent phenomena at slow passage to limit-cycle oscillations in a bistable thermoacoustic system.
    Unni VR; Gopalakrishnan EA; Syamkumar KS; Sujith RI; Surovyatkina E; Kurths J
    Chaos; 2019 Mar; 29(3):031102. PubMed ID: 30927835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of noise on the synchronization of the stochastic Kuramoto model.
    Bag BC; Petrosyan KG; Hu CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056210. PubMed ID: 18233742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attenuation of thermoacoustic combustion oscillations in a swirl-stabilized turbulent combustor.
    Kurosaka T; Masuda S; Gotoda H
    Chaos; 2021 Jul; 31(7):073121. PubMed ID: 34340326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.