BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38498918)

  • 1. Selective Late-Stage Functionalization of Tryptophan-Containing Peptides To Facilitate Bioorthogonal Tetrazine Ligation.
    Mupparapu N; Syed B; Nguyen DN; Vo TH; Trujillo A; Elshahawi SI
    Org Lett; 2024 Mar; 26(12):2489-2494. PubMed ID: 38498918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry.
    Pagel M
    J Pept Sci; 2019 Jan; 25(1):e3141. PubMed ID: 30585397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles.
    Wu H; Devaraj NK
    Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene.
    Eising S; Xin BT; Kleinpenning F; Heming JJA; Florea BI; Overkleeft HS; Bonger KM
    Chembiochem; 2018 Aug; 19(15):1648-1652. PubMed ID: 29806887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications.
    Handula M; Chen KT; Seimbille Y
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tetrazine-induced activation of a trimethyl lock as a click-to-release system for protected doxorubicin.
    Friederich J; Xu C; Raunft P; Fuchs HLS; Brönstrup M
    Chem Commun (Camb); 2023 Jun; 59(48):7451-7454. PubMed ID: 37254691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proximity-enhanced protein crosslinking through an alkene-tetrazine reaction.
    Ma B; Niu W; Guo J
    Bioorg Chem; 2023 Mar; 132():106359. PubMed ID: 36642019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Late-Stage Chemoenzymatic Installation of Hydroxy-Bearing Allyl Moiety on the Indole Ring of Tryptophan-Containing Peptides.
    Mupparapu N; Brewster L; Ostrom KF; Elshahawi SI
    Chemistry; 2022 Apr; 28(20):e202104614. PubMed ID: 35178791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions.
    Wu H; Devaraj NK
    Top Curr Chem (Cham); 2016 Feb; 374(1):3. PubMed ID: 27572986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioorthogonal micellar nanoreactors for prodrug cancer therapy using an inverse-electron-demand Diels-Alder reaction.
    Suehiro F; Fujii S; Nishimura T
    Chem Commun (Camb); 2022 Jun; 58(50):7026-7029. PubMed ID: 35642953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorogenic Iridium(III) bis-Tetrazine Complexes for Bioorthogonal Peptide Stapling, Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels.
    Yip AM; Lai CK; Yiu KS; Lo KK
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202116078. PubMed ID: 35119163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of IEDDA bioorthogonal system: Efficient process to improve trans-cyclooctene/tetrazine interaction.
    Béquignat JB; Ty N; Rondon A; Taiariol L; Degoul F; Canitrot D; Quintana M; Navarro-Teulon I; Miot-Noirault E; Boucheix C; Chezal JM; Moreau E
    Eur J Med Chem; 2020 Oct; 203():112574. PubMed ID: 32683167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acids with fluorescent tetrazine ethers as bioorthogonal handles for peptide modification.
    Ros E; Bellido M; Matarin JA; Gallen A; Martínez M; Rodríguez L; Verdaguer X; Ribas de Pouplana L; Riera A
    RSC Adv; 2022 May; 12(23):14321-14327. PubMed ID: 35702248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-Specific Antibody Functionalization Using Tetrazine-Styrene Cycloaddition.
    Umlauf BJ; Mix KA; Grosskopf VA; Raines RT; Shusta EV
    Bioconjug Chem; 2018 May; 29(5):1605-1613. PubMed ID: 29694034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Norbornylated Cellulose and Its "Click" Modification by an Inverse-Electron Demand Diels-Alder (iEDDA) Reaction.
    Wappl C; Schallert V; Slugovc C; Knall AC; Spirk S
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry.
    Dong P; Wang X; Zheng J; Zhang X; Li Y; Wu H; Li L
    Curr Med Chem; 2020; 27(23):3924-3943. PubMed ID: 31267851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids.
    Loehr MO; Luedtke NW
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202112931. PubMed ID: 35139255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Live-Cell Imaging of Sterculic Acid-a Naturally Occurring 1,2-Cyclopropene Fatty Acid-by Bioorthogonal Reaction with Turn-On Tetrazine-Fluorophore Conjugates.
    Bertheussen K; van de Plassche M; Bakkum T; Gagestein B; Ttofi I; Sarris AJC; Overkleeft HS; van der Stelt M; van Kasteren SI
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202207640. PubMed ID: 35838324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Factor Fluorogenicity of Tetrazine-Modified Cyanine-Styryl Dyes for Bioorthogonal Labelling of DNA.
    Geng P; List E; Rönicke F; Wagenknecht HA
    Chemistry; 2023 Feb; 29(8):e202203156. PubMed ID: 36367152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Minimal, Unstrained S-Allyl Handle for Pre-Targeting Diels-Alder Bioorthogonal Labeling in Live Cells.
    Oliveira BL; Guo Z; Boutureira O; Guerreiro A; Jiménez-Osés G; Bernardes GJ
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14683-14687. PubMed ID: 27763724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.