These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38500015)

  • 41. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.
    Dold B; Blowes DW; Dickhout R; Spangenberg JE; Pfeifer HR
    Environ Sci Technol; 2005 Apr; 39(8):2515-21. PubMed ID: 15884343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Behavior and Fate of Chromium and Carbon during Fe(II)-Induced Transformation of Ferrihydrite Organominerals.
    Zhao Y; Moore OW; Xiao KQ; Otero-Fariña A; Banwart SA; Wu FC; Peacock CL
    Environ Sci Technol; 2023 Nov; 57(45):17501-17510. PubMed ID: 37921659
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mineralogical and chemical characterization of mining waste and utilization for carbon sequestration through mineral carbonation.
    Molahid VLM; Kusin FM; Syed Hasan SNM
    Environ Geochem Health; 2023 Jul; 45(7):4439-4460. PubMed ID: 36811700
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Siderite-based anaerobic iron cycle driven by autotrophic thermophilic microbial consortium.
    Zavarzina DG; Kochetkova TV; Chistyakova NI; Gracheva MA; Antonova AV; Merkel AY; Perevalova AA; Chernov MS; Koksharov YA; Bonch-Osmolovskaya EA; Gavrilov SN; Bychkov AY
    Sci Rep; 2020 Dec; 10(1):21661. PubMed ID: 33303863
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic Performance and Fate of Electrons during Nitrate-Reducing Fe(II) Oxidation by the Autotrophic Enrichment Culture KS Grown at Different Initial Fe/N Ratios.
    Huang J; Mellage A; Garcia JP; Glöckler D; Mahler S; Elsner M; Jakus N; Mansor M; Jiang H; Kappler A
    Appl Environ Microbiol; 2023 Mar; 89(3):e0019623. PubMed ID: 36877057
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biogenic Fenton process - A possible mechanism for the mineralization of organic carbon in fresh waters.
    Vähätalo AV; Xiao Y; Salonen K
    Water Res; 2021 Jan; 188():116483. PubMed ID: 33059156
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Iron catalysis at the origin of life.
    Camprubi E; Jordan SF; Vasiliadou R; Lane N
    IUBMB Life; 2017 Jun; 69(6):373-381. PubMed ID: 28470848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.
    Cooper DC; Picardal FF; Coby AJ
    Environ Sci Technol; 2006 Mar; 40(6):1884-91. PubMed ID: 16570612
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CO
    Müller F; Rapp J; Hacker AL; Feith A; Takors R; Blombach B
    mBio; 2020 Mar; 11(2):. PubMed ID: 32156807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ferric iron amendment increases Fe(III)-reducing microbial diversity and carbon oxidation in on-site wastewater systems.
    Azam HM; Finneran KT
    Chemosphere; 2013 Jan; 90(4):1435-43. PubMed ID: 23062939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electron Transfer Strategies Regulate Carbonate Mineral and Micropore Formation.
    Zeng Z; Tice MM
    Astrobiology; 2018 Jan; 18(1):28-36. PubMed ID: 29265883
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling.
    Mejia J; Roden EE; Ginder-Vogel M
    Environ Sci Technol; 2016 Apr; 50(7):3580-8. PubMed ID: 26949922
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa.
    Beukes NJ; Klein C; Kaufman AJ; Hayes JM
    Econ Geol; 1990; 85(4):663-90. PubMed ID: 11538478
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing anaerobic degradation of phenol to methane via solubilizing Fe(III) oxides for dissimilatory iron reduction with organic chelates.
    Li Y; Ren C; Zhao Z; Yu Q; Zhao Z; Liu L; Zhang Y; Feng Y
    Bioresour Technol; 2019 Nov; 291():121858. PubMed ID: 31377515
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).
    Etique M; Jorand FP; Zegeye A; Grégoire B; Despas C; Ruby C
    Environ Sci Technol; 2014 Apr; 48(7):3742-51. PubMed ID: 24605878
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CO₂ sequestration through mineral carbonation of iron oxyhydroxides.
    Lammers K; Murphy R; Riendeau A; Smirnov A; Schoonen MA; Strongin DR
    Environ Sci Technol; 2011 Dec; 45(24):10422-8. PubMed ID: 22066460
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissimilatory nitrate reduction to ammonium (DNRA) potentially facilitates the accumulation of phosphorus in lake water from sediment.
    Yuan H; Jia B; Zeng Q; Zhou Y; Wu J; Wang H; Fang H; Cai Y; Li Q
    Chemosphere; 2022 Sep; 303(Pt 1):134664. PubMed ID: 35460675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.
    Li FB; Li XM; Zhou SG; Zhuang L; Cao F; Huang DY; Xu W; Liu TX; Feng CH
    Environ Pollut; 2010 May; 158(5):1733-40. PubMed ID: 20031285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.