These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38500231)

  • 1. Rapid classification of epidemiologically relevant age categories of the malaria vector, Anopheles funestus.
    Mwanga EP; Siria DJ; Mshani IH; Mwinyi SH; Abbasi S; Jimenez MG; Wynne K; Baldini F; Babayan SA; Okumu FO
    Parasit Vectors; 2024 Mar; 17(1):143. PubMed ID: 38500231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reagent-free detection of Plasmodium falciparum malaria infections in field-collected mosquitoes using mid-infrared spectroscopy and machine learning.
    Mwanga EP; Kweyamba PA; Siria DJ; Mshani IH; Mchola IS; Makala FE; Seleman G; Abbasi S; Mwinyi SH; González-Jiménez M; Waynne K; Baldini F; Babayan SA; Okumu FO
    Sci Rep; 2024 May; 14(1):12100. PubMed ID: 38802488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using mid-infrared spectroscopy and supervised machine-learning to identify vertebrate blood meals in the malaria vector, Anopheles arabiensis.
    Mwanga EP; Mapua SA; Siria DJ; Ngowo HS; Nangacha F; Mgando J; Baldini F; González Jiménez M; Ferguson HM; Wynne K; Selvaraj P; Babayan SA; Okumu FO
    Malar J; 2019 May; 18(1):187. PubMed ID: 31146762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using transfer learning and dimensionality reduction techniques to improve generalisability of machine-learning predictions of mosquito ages from mid-infrared spectra.
    Mwanga EP; Siria DJ; Mitton J; Mshani IH; González-Jiménez M; Selvaraj P; Wynne K; Baldini F; Okumu FO; Babayan SA
    BMC Bioinformatics; 2023 Jan; 24(1):11. PubMed ID: 36624386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania.
    Kaindoa EW; Matowo NS; Ngowo HS; Mkandawile G; Mmbando A; Finda M; Okumu FO
    PLoS One; 2017; 12(5):e0177807. PubMed ID: 28542335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sample preservation methods and duration of storage on the performance of mid-infrared spectroscopy for predicting the age of malaria vectors.
    Mgaya JN; Siria DJ; Makala FE; Mgando JP; Vianney JM; Mwanga EP; Okumu FO
    Parasit Vectors; 2022 Aug; 15(1):281. PubMed ID: 35933384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission.
    Degefa T; Yewhalaw D; Zhou G; Lee MC; Atieli H; Githeko AK; Yan G
    Malar J; 2017 Nov; 16(1):443. PubMed ID: 29110670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid assessment of the blood-feeding histories of wild-caught malaria mosquitoes using mid-infrared spectroscopy and machine learning.
    Mwanga EP; Mchola IS; Makala FE; Mshani IH; Siria DJ; Mwinyi SH; Abbasi S; Seleman G; Mgaya JN; Jiménez MG; Wynne K; Sikulu-Lord MT; Selvaraj P; Okumu FO; Baldini F; Babayan SA
    Malar J; 2024 Mar; 23(1):86. PubMed ID: 38532415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a miniaturized double-net trap (DN-Mini) to assess relationships between indoor-outdoor biting preferences and physiological ages of two malaria vectors, Anopheles arabiensis and Anopheles funestus.
    Limwagu AJ; Kaindoa EW; Ngowo HS; Hape E; Finda M; Mkandawile G; Kihonda J; Kifungo K; Njalambaha RM; Matoke-Muhia D; Okumu FO
    Malar J; 2019 Aug; 18(1):282. PubMed ID: 31438957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entomological survey of sibling species in the Anopheles funestus group in Tanzania confirms the role of Anopheles parensis as a secondary malaria vector.
    Mapua SA; Samb B; Nambunga IH; Mkandawile G; Bwanaly H; Kaindoa EW; Odero JO; Masalu JP; Kahamba NF; Hape EE; Govella NJ; Okumu FO; Tripet F
    Parasit Vectors; 2024 Jun; 17(1):261. PubMed ID: 38886827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial abundance and human biting rate of Anopheles arabiensis and Anopheles funestus in savannah and rice agro-ecosystems of Central Tanzania.
    Mboera LE; Bwana VM; Rumisha SF; Stanley G; Tungu PK; Malima RC
    Geospat Health; 2015 May; 10(1):322. PubMed ID: 26054517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative assessment of insecticide resistance phenotypes in two major malaria vectors, Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania.
    Pinda PG; Eichenberger C; Ngowo HS; Msaky DS; Abbasi S; Kihonda J; Bwanaly H; Okumu FO
    Malar J; 2020 Nov; 19(1):408. PubMed ID: 33176805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-field evaluation of aquatic predators for the control of Anopheles funestus in rural south-eastern Tanzania.
    Mahenge HH; Muyaga LL; Nkya JD; Kafwenji AD; Mwalugelo YA; Kahamba NF; Ngowo HS; Kaindoa EW
    Malar J; 2024 Aug; 23(1):228. PubMed ID: 39090658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of malaria vector composition and Plasmodium falciparum infection in mainland Tanzania: 2017-2021 data from the national malaria vector entomological surveillance.
    Mwalimu CD; Kiware S; Nshama R; Derua Y; Machafuko P; Gitanya P; Mwafongo W; Bernard J; Emidi B; Mwingira V; Malima R; Githu V; Masanja B; Mlacha Y; Tungu P; Kabula B; Sambu E; Batengana B; Matowo J; Govella N; Chaki P; Lazaro S; Serbantez N; Kitau J; Magesa SM; Kisinza WN
    Malar J; 2024 Jan; 23(1):29. PubMed ID: 38243220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania.
    Lwetoijera DW; Harris C; Kiware SS; Dongus S; Devine GJ; McCall PJ; Majambere S
    Malar J; 2014 Aug; 13():331. PubMed ID: 25150840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preferred resting surfaces of dominant malaria vectors inside different house types in rural south-eastern Tanzania.
    Msugupakulya BJ; Kaindoa EW; Ngowo HS; Kihonda JM; Kahamba NF; Msaky DS; Matoke-Muhia D; Tungu PK; Okumu FO
    Malar J; 2020 Jan; 19(1):22. PubMed ID: 31941508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using ecological observations to improve malaria control in areas where Anopheles funestus is the dominant vector.
    Kahamba NF; Finda M; Ngowo HS; Msugupakulya BJ; Baldini F; Koekemoer LL; Ferguson HM; Okumu FO
    Malar J; 2022 Jun; 21(1):158. PubMed ID: 35655190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dramatic decreases of malaria transmission intensities in Ifakara, south-eastern Tanzania since early 2000s.
    Finda MF; Limwagu AJ; Ngowo HS; Matowo NS; Swai JK; Kaindoa E; Okumu FO
    Malar J; 2018 Oct; 17(1):362. PubMed ID: 30326881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania.
    Nambunga IH; Ngowo HS; Mapua SA; Hape EE; Msugupakulya BJ; Msaky DS; Mhumbira NT; Mchwembo KR; Tamayamali GZ; Mlembe SV; Njalambaha RM; Lwetoijera DW; Finda MF; Govella NJ; Matoke-Muhia D; Kaindoa EW; Okumu FO
    Malar J; 2020 Jun; 19(1):219. PubMed ID: 32576200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anopheles rufipes implicated in malaria transmission both indoors and outdoors alongside Anopheles funestus and Anopheles arabiensis in rural south-east Zambia.
    Saili K; de Jager C; Sangoro OP; Nkya TE; Masaninga F; Mwenya M; Sinyolo A; Hamainza B; Chanda E; Fillinger U; Mutero CM
    Malar J; 2023 Mar; 22(1):95. PubMed ID: 36927373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.