BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38500531)

  • 1. Mammal dung-dung beetle trophic networks: an improved method based on gut-content DNA.
    Pedersen KM; von Beeren C; Oggioni A; Blüthgen N
    PeerJ; 2024; 12():e16627. PubMed ID: 38500531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing and optimizing metabarcoding of iDNA from dung beetles to sample mammals in the hyperdiverse Neotropics.
    Saranholi BH; França FM; Vogler AP; Barlow J; Vaz de Mello FZ; Maldaner ME; Carvalho E; Gestich CC; Howes B; Banks-Leite C; Galetti PM
    Mol Ecol Resour; 2024 Jul; 24(5):e13961. PubMed ID: 38646932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic identification of mammalian meal source in dung beetle gut contents.
    Gómez A; Kolokotronis SO
    Mitochondrial DNA A DNA Mapp Seq Anal; 2017 Jul; 28(4):612-615. PubMed ID: 27159706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attractiveness of native mammal's feces of different trophic guilds to dung beetles (Coleoptera: Scarabaeinae).
    Bogoni JA; Hernández MI
    J Insect Sci; 2014; 14():. PubMed ID: 25528749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dung beetle-mammal associations: methods, research trends and future directions.
    Raine EH; Slade EM
    Proc Biol Sci; 2019 Feb; 286(1897):20182002. PubMed ID: 30963853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative effects of forest gaps on dung removal in a full-factorial experiment.
    Staab M; Achury R; Ammer C; Ehbrecht M; Irmscher V; Mohr H; Schall P; Weisser WW; Blüthgen N
    J Anim Ecol; 2022 Oct; 91(10):2113-2124. PubMed ID: 35978526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional consequences of animal community changes in managed grasslands: An application of the CAFE approach.
    Hogan KFE; Jones HP; Savage K; Burke AM; Guiden PW; Hosler SC; Rowland-Schaefer E; Barber NA
    Ecology; 2024 Jan; 105(1):e4192. PubMed ID: 37878728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tropical forest dung beetle-mammal dung interaction networks remain similar across an environmental disturbance gradient.
    Chiew LY; Hackett TD; Brodie JF; Teoh SW; Burslem DFRP; Reynolds G; Deere NJ; Vairappan CS; Slade EM
    J Anim Ecol; 2022 Mar; 91(3):604-617. PubMed ID: 34954816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dung beetles in an avian-dominated island ecosystem: feeding and trophic ecology.
    Stavert JR; Gaskett AC; Scott DJ; Beggs JR
    Oecologia; 2014 Sep; 176(1):259-71. PubMed ID: 24974270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dung beetles as samplers of mammals in Malaysian Borneo-a test of high throughput metabarcoding of iDNA.
    Drinkwater R; Williamson J; Clare EL; Chung AYC; Rossiter SJ; Slade E
    PeerJ; 2021; 9():e11897. PubMed ID: 34447624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of dung beetle (Coleoptera: Scarabaeidae) attraction to native and exotic mammal dung.
    Whipple SD; Hoback WW
    Environ Entomol; 2012 Apr; 41(2):238-44. PubMed ID: 22506995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linking functional group richness and ecosystem functions of dung beetles: an experimental quantification.
    Milotić T; Quidé S; Van Loo T; Hoffmann M
    Oecologia; 2017 Jan; 183(1):177-190. PubMed ID: 27761721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dung beetle community assemblages in a southern African landscape: niche overlap between domestic and wild herbivore dung.
    Sands B; Mgidiswa N; Curson S; Nyamukondiwa C; Wall R
    Bull Entomol Res; 2022 Feb; 112(1):131-142. PubMed ID: 34412713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing sika deer population density may change resource use by larval dung beetles.
    Yama H; Naganuma T; Tochigi K; Trentin BE; Nakashita R; Inagaki A; Koike S
    PLoS One; 2019; 14(12):e0226078. PubMed ID: 31805107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dung beetle-mediated soil modification: a data set for analyzing the effects of a recent introduction on soil quality.
    Jones MS; Tylianakis JM; Reganold JP; Snyder WE
    Ecology; 2018 Jul; 99(7):1694. PubMed ID: 29894559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of different soil and water loss control measures on the dung beetle assemblages in Huangfuchuan watershed, Inner Mongolia of North China].
    Liu W; Wang RR; Liu XM
    Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):777-87. PubMed ID: 23755495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Attraction of Amazonian Dung Beetles (Coleoptera: Scarabaeidae: Scarabaeinae) to the Feces of Omnivorous Mammals Is Dependent on Their Diet: Implications for Ecological Monitoring.
    Ferreira KR; Puker A; Correa CMA
    Environ Entomol; 2020 Dec; 49(6):1383-1392. PubMed ID: 32960219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density-dependent ecosystem service delivery under shifting temperatures by dung beetles.
    Gotcha N; Cuthbert RN; Machekano H; Nyamukondiwa C
    Sci Total Environ; 2022 Feb; 807(Pt 1):150575. PubMed ID: 34634717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimising Methods for Dung Beetle (Coleoptera: Scarabaeidae) Sampling in Brazilian Pastures.
    Correa CMA; Braga RF; Puker A; Abot AR; Korasaki V
    Environ Entomol; 2018 Feb; 47(1):48-54. PubMed ID: 29293908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dung-visiting beetle diversity is mainly affected by land use, while community specialization is driven by climate.
    Englmeier J; von Hoermann C; Rieker D; Benbow ME; Benjamin C; Fricke U; Ganuza C; Haensel M; Lackner T; Mitesser O; Redlich S; Riebl R; Rojas-Botero S; Rummler T; Salamon JA; Sommer D; Steffan-Dewenter I; Tobisch C; Uhler J; Uphus L; Zhang J; Müller J
    Ecol Evol; 2022 Oct; 12(10):e9386. PubMed ID: 36248674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.