These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38500540)
21. Short-term wind speed forecasting based on a hybrid model of ICEEMDAN, MFE, LSTM and informer. Xinxin W; Xiaopan S; Xueyi A; Shijia L PLoS One; 2023; 18(9):e0289161. PubMed ID: 37682883 [TBL] [Abstract][Full Text] [Related]
22. LSTM input timestep optimization using simulated annealing for wind power predictions. Muneeb M PLoS One; 2022; 17(10):e0275649. PubMed ID: 36206213 [TBL] [Abstract][Full Text] [Related]
23. Research on renewable energy prediction technology: empirical analysis for Argentina and China. Li G; Wang J; Qi Z; Wang T; Ren Y; Zhang Y; Li G Environ Sci Pollut Res Int; 2023 Feb; 30(8):21225-21237. PubMed ID: 36269484 [TBL] [Abstract][Full Text] [Related]
24. Multi-task learning for the prediction of wind power ramp events with deep neural networks. Dorado-Moreno M; Navarin N; Gutiérrez PA; Prieto L; Sperduti A; Salcedo-Sanz S; Hervás-Martínez C Neural Netw; 2020 Mar; 123():401-411. PubMed ID: 31926464 [TBL] [Abstract][Full Text] [Related]
25. Short-Term Wind Power Prediction Based on Encoder-Decoder Network and Multi-Point Focused Linear Attention Mechanism. Mei J; Wang C; Luo S; Xu W; Deng Z Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275412 [TBL] [Abstract][Full Text] [Related]
26. Technical assessment of small-scale wind power for residential use in Mexico: A Bayesian intelligence approach. Borunda M; de la Cruz J; Garduno-Ramirez R; Nicholson A PLoS One; 2020; 15(3):e0230122. PubMed ID: 32163479 [TBL] [Abstract][Full Text] [Related]
27. Variable renewable energy penetration impact on productivity: A case study of poultry farming. Dupas MC; Parison S; Noel V; Chatzimpiros P; Herbert É PLoS One; 2023; 18(10):e0286242. PubMed ID: 37782652 [TBL] [Abstract][Full Text] [Related]
28. Electricity generation: options for reduction in carbon emissions. Whittington HW Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490 [TBL] [Abstract][Full Text] [Related]
29. Towards Automated Model Selection for Wind Speed and Solar Irradiance Forecasting. Blazakis K; Schetakis N; Bonfini P; Stavrakakis K; Karapidakis E; Katsigiannis Y Sensors (Basel); 2024 Aug; 24(15):. PubMed ID: 39124081 [TBL] [Abstract][Full Text] [Related]
30. Feature selection in wind speed forecasting systems based on meta-heuristic optimization. El-Kenawy EM; Mirjalili S; Khodadadi N; Abdelhamid AA; Eid MM; El-Said M; Ibrahim A PLoS One; 2023; 18(2):e0278491. PubMed ID: 36749744 [TBL] [Abstract][Full Text] [Related]
31. Benefit Modeling and Analysis of Wind Power Generation under Social Energy Economy and Public Health. Liu Y; Abdul Karim Z; Khalid N; Said FF J Environ Public Health; 2022; 2022():5635853. PubMed ID: 35719856 [TBL] [Abstract][Full Text] [Related]
32. Implementation of hybrid wind speed prediction model based on different data mining and signal processing approaches. Katipoğlu OM Environ Sci Pollut Res Int; 2023 May; 30(23):64589-64605. PubMed ID: 37071355 [TBL] [Abstract][Full Text] [Related]
33. Capacity factors for electrical power generation from renewable and nonrenewable sources. Bolson N; Prieto P; Patzek T Proc Natl Acad Sci U S A; 2022 Dec; 119(52):e2205429119. PubMed ID: 36538483 [TBL] [Abstract][Full Text] [Related]
34. An innovative forecasting model to predict wind energy. Zhang Y; Wang S Environ Sci Pollut Res Int; 2022 Oct; 29(49):74602-74618. PubMed ID: 35639315 [TBL] [Abstract][Full Text] [Related]
35. PM Yang M; Fan H; Zhao K Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31739449 [TBL] [Abstract][Full Text] [Related]
36. Assessments of wind-energy potential in selected sites from three geopolitical zones in Nigeria: implications for renewable/sustainable rural electrification. Okeniyi JO; Ohunakin OS; Okeniyi ET ScientificWorldJournal; 2015; 2015():581679. PubMed ID: 25879063 [TBL] [Abstract][Full Text] [Related]
37. Fuzzy-based prediction of solar PV and wind power generation for microgrid modeling using particle swarm optimization. Teferra DM; Ngoo LMH; Nyakoe GN Heliyon; 2023 Jan; 9(1):e12802. PubMed ID: 36704286 [TBL] [Abstract][Full Text] [Related]
38. Research of a combination system based on fuzzy sets and multi-objective marine predator algorithm for point and interval prediction of wind speed. Qian Y; Wang J; Zhang H; Zhang L Environ Sci Pollut Res Int; 2023 Mar; 30(13):35781-35807. PubMed ID: 36536200 [TBL] [Abstract][Full Text] [Related]
39. A Hybrid Stacked CNN and Residual Feedback GMDH-LSTM Deep Learning Model for Stroke Prediction Applied on Mobile AI Smart Hospital Platform. Elbagoury BM; Vladareanu L; Vlădăreanu V; Salem AB; Travediu AM; Roushdy MI Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050561 [TBL] [Abstract][Full Text] [Related]
40. An integrated method with adaptive decomposition and machine learning for renewable energy power generation forecasting. Li G; Yu L; Zhang Y; Sun P; Li R; Zhang Y; Li G; Wang P Environ Sci Pollut Res Int; 2023 Mar; 30(14):41937-41953. PubMed ID: 36640232 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]