These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38500621)

  • 21. Catalytic advancements in carbonaceous materials for bio-energy generation in microbial fuel cells: a review.
    Dhilllon SK; Kundu PP; Jain R
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):24815-24841. PubMed ID: 34993799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micro-sized microbial fuel cell: a mini-review.
    Wang HY; Bernarda A; Huang CY; Lee DJ; Chang JS
    Bioresour Technol; 2011 Jan; 102(1):235-43. PubMed ID: 20709539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An overview in the development of cathode materials for the improvement in power generation of microbial fuel cells.
    Qiu S; Guo Z; Naz F; Yang Z; Yu C
    Bioelectrochemistry; 2021 Oct; 141():107834. PubMed ID: 34022579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells.
    Kim M; Kim HW; Nam JY; In SI
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6891-9. PubMed ID: 26716261
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.
    Chen Q; Pu W; Hou H; Hu J; Liu B; Li J; Cheng K; Huang L; Yuan X; Yang C; Yang J
    Bioresour Technol; 2018 Feb; 249():567-573. PubMed ID: 29091839
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial fuel cell treatment energy-offset for fertilizer production from human urine.
    Sabin JM; Leverenz H; Bischel HN
    Chemosphere; 2022 May; 294():133594. PubMed ID: 35031247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Biomass energy utilization in microbial fuel cells: potentials and challenges].
    Huang L; Cheng S
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):942-9. PubMed ID: 20954395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges.
    Selvasembian R; Mal J; Rani R; Sinha R; Agrahari R; Joshua I; Santhiagu A; Pradhan N
    Bioresour Technol; 2022 Feb; 346():126462. PubMed ID: 34863847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nano-hydroxyapatite/carbon nanotube: An excellent anode modifying material for improving the power output and diclofenac sodium removal of microbial fuel cells.
    Guo W; Chen Y; Cui L; Xu N; Wang M; Sun Y; Yan Y
    Bioelectrochemistry; 2023 Dec; 154():108523. PubMed ID: 37478753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioelectrochemical systems: Sustainable bio-energy powerhouses.
    Gul MM; Ahmad KS
    Biosens Bioelectron; 2019 Oct; 142():111576. PubMed ID: 31412313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separator characteristics for increasing performance of microbial fuel cells.
    Zhang X; Cheng S; Wang X; Huang X; Logan BE
    Environ Sci Technol; 2009 Nov; 43(21):8456-61. PubMed ID: 19924984
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in the separators for microbial fuel cells.
    Li WW; Sheng GP; Liu XW; Yu HQ
    Bioresour Technol; 2011 Jan; 102(1):244-52. PubMed ID: 20382524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode.
    Tao Y; Liu Q; Chen J; Wang B; Wang Y; Liu K; Li M; Jiang H; Lu Z; Wang D
    Environ Sci Technol; 2016 Jul; 50(14):7889-95. PubMed ID: 27294591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on recent advancements in bioenergy production using microbial fuel cells.
    Ramya M; Senthil Kumar P
    Chemosphere; 2022 Feb; 288(Pt 2):132512. PubMed ID: 34634275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilizing Biomass-Based Graphene Oxide-Polyaniline-Ag Electrodes in Microbial Fuel Cells to Boost Energy Generation and Heavy Metal Removal.
    Yaqoob AA; Serrà A; Bhawani SA; Ibrahim MNM; Khan A; Alorfi HS; Asiri AM; Hussein MA; Khan I; Umar K
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ceramic-microbial fuel cell (C-MFC) for waste water treatment: A mini review.
    James A
    Environ Res; 2022 Jul; 210():112963. PubMed ID: 35217013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial phyto-power systems - A sustainable integration of phytoremediation and microbial fuel cells.
    Saba B; Khan M; Christy AD; Kjellerup BV
    Bioelectrochemistry; 2019 Jun; 127():1-11. PubMed ID: 30614442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of clayware ceramic separator modified with silica in microbial fuel cell for bioelectricity generation during rice mill wastewater treatment.
    Raychaudhuri A; Sahoo RN; Behera M
    Water Sci Technol; 2021 Jul; 84(1):66-76. PubMed ID: 34280155
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing microbial fuel cell performance using anode modified with Fe
    Zheng X; Hou S; Amanze C; Zeng Z; Zeng W
    Bioprocess Biosyst Eng; 2022 May; 45(5):877-890. PubMed ID: 35166901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells.
    Zhang L; He W; Yang J; Sun J; Li H; Han B; Zhao S; Shi Y; Feng Y; Tang Z; Liu S
    Biosens Bioelectron; 2018 Dec; 122():217-223. PubMed ID: 30265972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.