These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes. Li PB; Xiang ZL; Rabl P; Nori F Phys Rev Lett; 2016 Jul; 117(1):015502. PubMed ID: 27419577 [TBL] [Abstract][Full Text] [Related]
3. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators. Zhuang H; Kong F; Li K; Sheng S Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785 [TBL] [Abstract][Full Text] [Related]
4. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide. Zhang B; Sun Y; Xu Y; Hu G; Zeng P; Gao M; Xia D; Huang Y; Li Z Opt Lett; 2021 Jun; 46(12):2828-2831. PubMed ID: 34129551 [TBL] [Abstract][Full Text] [Related]
5. Strongly Coupled Nanotube Electromechanical Resonators. Deng GW; Zhu D; Wang XH; Zou CL; Wang JT; Li HO; Cao G; Liu D; Li Y; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP Nano Lett; 2016 Sep; 16(9):5456-62. PubMed ID: 27487412 [TBL] [Abstract][Full Text] [Related]
7. Quantum memory and non-demolition measurement of single phonon state with nitrogen-vacancy centers ensemble. Wang RX; Cai K; Yin ZQ; Long GL Opt Express; 2017 Nov; 25(24):30149-30161. PubMed ID: 29221048 [TBL] [Abstract][Full Text] [Related]
8. Electromagnetically induced transparency and slow light with optomechanics. Safavi-Naeini AH; Mayer Alegre TP; Chan J; Eichenfield M; Winger M; Lin Q; Hill JT; Chang DE; Painter O Nature; 2011 Apr; 472(7341):69-73. PubMed ID: 21412237 [TBL] [Abstract][Full Text] [Related]
9. All-optically controlled mode-coupling induced transparency with tunable efficiency in a microsphere resonator. Yuan W; Fu H Opt Lett; 2024 Aug; 49(15):4421-4424. PubMed ID: 39090949 [TBL] [Abstract][Full Text] [Related]
11. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Ovartchaiyapong P; Lee KW; Myers BA; Jayich AC Nat Commun; 2014 Jul; 5():4429. PubMed ID: 25034828 [TBL] [Abstract][Full Text] [Related]
12. Double Electromagnetically Induced Transparency and Its Slow Light Application Based On a Guided-Mode Resonance Grating Cascade Structure. Li G; Yang J; Zhang Z; Tao Y; Zhou L; Huang H; Zhang Z; Han Y Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825800 [TBL] [Abstract][Full Text] [Related]
16. Generation of quantum entanglement based on electromagnetically induced transparency media. Chuang YL; Lee RK; Yu IA Opt Express; 2021 Feb; 29(3):3928-3942. PubMed ID: 33770982 [TBL] [Abstract][Full Text] [Related]
17. Tunable microwave-optical entanglement and conversion in multimode electro-opto-mechanics. Wei T; Wu D; Miao Q; Yang C; Luo J Opt Express; 2022 Mar; 30(6):10135-10151. PubMed ID: 35299424 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. Hei XL; Li PB; Pan XF; Nori F Phys Rev Lett; 2023 Feb; 130(7):073602. PubMed ID: 36867822 [TBL] [Abstract][Full Text] [Related]
19. Optical bistability and multistability induced by quantum coherence in diamond germanium-vacancy color centers. Zhang H; Wang G; Sun D; Li X; Sun H Appl Opt; 2019 Apr; 58(10):2522-2529. PubMed ID: 31045047 [TBL] [Abstract][Full Text] [Related]
20. Optomechanical Quantum Control of a Nitrogen-Vacancy Center in Diamond. Golter DA; Oo T; Amezcua M; Stewart KA; Wang H Phys Rev Lett; 2016 Apr; 116(14):143602. PubMed ID: 27104709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]