These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38501224)

  • 21. AUTS2 Syndrome: Molecular Mechanisms and Model Systems.
    Biel A; Castanza AS; Rutherford R; Fair SR; Chifamba L; Wester JC; Hester ME; Hevner RF
    Front Mol Neurosci; 2022; 15():858582. PubMed ID: 35431798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A functional approach to understanding the role of NCKX5 in Xenopus pigmentation.
    Williams RM; Winkfein RJ; Ginger RS; Green MR; Schnetkamp PP; Wheeler GN
    PLoS One; 2017; 12(7):e0180465. PubMed ID: 28692664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Xmab21l3 mediates dorsoventral patterning in Xenopus laevis.
    Sridharan J; Haremaki T; Jin Y; Teegala S; Weinstein DC
    Mech Dev; 2012 Jul; 129(5-8):136-46. PubMed ID: 22609272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early cardiac morphogenesis defects caused by loss of embryonic macrophage function in Xenopus.
    Smith SJ; Mohun TJ
    Mech Dev; 2011; 128(5-6):303-15. PubMed ID: 21515365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. De novo small deletion affecting transcription start site of short isoform of AUTS2 gene in a patient with syndromic neurodevelopmental defects.
    Martinez-Delgado B; Lopez-Martin E; Lara-Herguedas J; Monzon S; Cuesta I; Juliá M; Aquino V; Rodriguez-Martin C; Damian A; Gonzalo I; Gomez-Mariano G; Baladron B; Cazorla R; Iglesias G; Roman E; Ros P; Tutor P; Mellor S; Jimenez C; Cabrejas MJ; Gonzalez-Vioque E; Alonso J; Bermejo-Sánchez E; Posada M
    Am J Med Genet A; 2021 Mar; 185(3):877-883. PubMed ID: 33346930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional Complexity and Distinct Expression Patterns of
    Kondrychyn I; Robra L; Thirumalai V
    G3 (Bethesda); 2017 Aug; 7(8):2577-2593. PubMed ID: 28626003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis.
    Barnett C; Yazgan O; Kuo HC; Malakar S; Thomas T; Fitzgerald A; Harbour W; Henry JJ; Krebs JE
    Mech Dev; 2012; 129(9-12):324-38. PubMed ID: 22691402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cardiac-restricted protein ADP-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly.
    Smith SJ; Towers N; Saldanha JW; Shang CA; Mahmood SR; Taylor WR; Mohun TJ
    Dev Biol; 2016 Aug; 416(2):373-88. PubMed ID: 27217161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xenopus Claudin-6 is required for embryonic pronephros morphogenesis and terminal differentiation.
    Sun J; Wang X; Li C; Mao B
    Biochem Biophys Res Commun; 2015 Jul; 462(3):178-83. PubMed ID: 25979361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development.
    Brade T; Gessert S; Kühl M; Pandur P
    Dev Biol; 2007 Nov; 311(2):297-310. PubMed ID: 17900553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation and expression of elrD1 and elrD2 transcripts during early Xenopus laevis development.
    Nassar F
    Int J Dev Biol; 2011; 55(1):127-32. PubMed ID: 21425088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cloning and functional characterization of a novel connexin expressed in somites of Xenopus laevis.
    De Boer TP; Kok B; Neuteboom KI; Spieker N; De Graaf J; Destrée OH; Rook MB; Van Veen TA; Jongsma HJ; Vos MA; De Bakker JM; Van Der Heyden MA
    Dev Dyn; 2005 Jul; 233(3):864-71. PubMed ID: 15895416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual developmental role of transcriptional regulator Ets1 in Xenopus cardiac neural crest vs. heart mesoderm.
    Nie S; Bronner ME
    Cardiovasc Res; 2015 Apr; 106(1):67-75. PubMed ID: 25691536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus.
    Tahir R; Kennedy A; Elsea SH; Dickinson AJ
    Mech Dev; 2014 Aug; 133():91-104. PubMed ID: 24878353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The splicing factor PQBP1 regulates mesodermal and neural development through FGF signaling.
    Iwasaki Y; Thomsen GH
    Development; 2014 Oct; 141(19):3740-51. PubMed ID: 25209246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A potential molecular pathogenesis of cardiac/laterality defects in Oculo-Facio-Cardio-Dental syndrome.
    Tanaka K; Kato A; Angelocci C; Watanabe M; Kato Y
    Dev Biol; 2014 Mar; 387(1):28-36. PubMed ID: 24440151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Two peroxiredoxins 6 of Xenopus laevis].
    Sharapov MG; Novoselov VI; Fesenko EE; Ravin VK
    Mol Biol (Mosk); 2011; 45(6):1017-25. PubMed ID: 22295572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis.
    Bardine N; Donow C; Korte B; Durston AJ; Knöchel W; Wacker SA
    Dev Dyn; 2009 Mar; 238(3):755-65. PubMed ID: 19235717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional differences between Tcf1 isoforms in early Xenopus development.
    Roël G; Van Den Broek O; Destrée O
    Int J Dev Biol; 2017; 61(1-2):29-34. PubMed ID: 28287244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis reveals distinct and overlapping functions of Mef2c and Mef2d during cardiogenesis in Xenopus laevis.
    Guo Y; Kühl SJ; Pfister AS; Cizelsky W; Denk S; Beer-Molz L; Kühl M
    PLoS One; 2014; 9(1):e87294. PubMed ID: 24489892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.