These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38501265)

  • 1. Comparison of Different Preparation Techniques of Thermophoretic Swimmers and Their Propulsion Velocity.
    Braun F; Wagner MFP; Toimil-Molares ME; von Klitzing R
    Langmuir; 2024 Mar; 40(11):5606-5616. PubMed ID: 38501265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Propulsion of Janus Particles near a Brush-Functionalized Substrate.
    Heidari M; Bregulla A; Landin SM; Cichos F; von Klitzing R
    Langmuir; 2020 Jul; 36(27):7775-7780. PubMed ID: 32544339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermophoretic Motion of a Sphere Parallel to an Insulated Plane.
    Chen SH
    J Colloid Interface Sci; 2000 Apr; 224(1):63-75. PubMed ID: 10708494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable Self-Thermophoretic Nanomotors with Polymeric Coating.
    Huang Y; Wu C; Dai J; Liu B; Cheng X; Li X; Cao Y; Chen J; Li Z; Tang J
    J Am Chem Soc; 2023 Sep; 145(36):19945-19952. PubMed ID: 37641545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Measurement of Janus Particle Cap Thickness.
    Rashidi A; Issa MW; Martin IT; Avishai A; Razavi S; Wirth CL
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):30925-30929. PubMed ID: 30142982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.
    Schick I; Lorenz S; Gehrig D; Schilmann AM; Bauer H; Panthöfer M; Fischer K; Strand D; Laquai F; Tremel W
    J Am Chem Soc; 2014 Feb; 136(6):2473-83. PubMed ID: 24460244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced self-thermophoresis of Janus spheroidal nanoparticles.
    Miloh T; Nagler J
    Electrophoresis; 2018 Oct; 39(19):2417-2424. PubMed ID: 30010202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-thermophoresis of laser-heated spherical Janus particles.
    Avital EJ; Miloh T
    Eur Phys J E Soft Matter; 2021 Nov; 44(11):139. PubMed ID: 34791586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of thermophoretic forces.
    Helden L; Eichhorn R; Bechinger C
    Soft Matter; 2015 Mar; 11(12):2379-86. PubMed ID: 25673057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Active Brownian Particles in Plasma.
    Arkar K; Vasiliev MM; Petrov OF; Kononov EA; Trukhachev FM
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33494544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-oxidative effects and harmlessness of asymmetric Au@Fe₃O₄ Janus particles on human blood cells.
    Landgraf L; Ernst P; Schick I; Köhler O; Oehring H; Tremel W; Hilger I
    Biomaterials; 2014 Aug; 35(25):6986-97. PubMed ID: 24856108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fuel-free locomotion of Janus motors: magnetically induced thermophoresis.
    Baraban L; Streubel R; Makarov D; Han L; Karnaushenko D; Schmidt OG; Cuniberti G
    ACS Nano; 2013 Feb; 7(2):1360-7. PubMed ID: 23268780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on thermophoretic deposition of micron-sized aerosol particles by direct numerical simulation and experiments.
    Han S; Li Y; Wen G; Huang T
    Ecotoxicol Environ Saf; 2022 Mar; 233():113316. PubMed ID: 35180621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas Bubbles Stabilized by Janus Particles with Varying Hydrophilic-Hydrophobic Surface Characteristics.
    Fujii S; Yokoyama Y; Nakayama S; Ito M; Yusa SI; Nakamura Y
    Langmuir; 2018 Jan; 34(3):933-942. PubMed ID: 28981288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Optical and Chemical Control of a Microsized Photofueled Janus Particle.
    Simoncelli S; Summer J; Nedev S; Kühler P; Feldmann J
    Small; 2016 Jun; 12(21):2854-8. PubMed ID: 27028413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of gold-calcium phosphate composite nanoparticles through coprecipitation mediated by amino-terminated polyethylene glycol.
    Nakamura M; Oyane A; Kuroiwa K; Kosuge H
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111169. PubMed ID: 32554258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.
    Wang A; Song Q; Ji B; Yao Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063031. PubMed ID: 26764827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.
    Patiño T; Feiner-Gracia N; Arqué X; Miguel-López A; Jannasch A; Stumpp T; Schäffer E; Albertazzi L; Sánchez S
    J Am Chem Soc; 2018 Jun; 140(25):7896-7903. PubMed ID: 29786426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photothermal Propelling and Pyroelectric Potential-Promoted Cell Internalization of Janus Nanoparticles and Pyroelectrodynamic Tumor Therapy.
    Wei J; Liu Y; Li Y; Zhang Z; Meng J; Xie S; Li X
    Adv Healthc Mater; 2023 Jul; 12(18):e2300338. PubMed ID: 36857737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cap weight on the motion of a Janus particle very near a wall.
    Rashidi A; Razavi S; Wirth CL
    Phys Rev E; 2020 Apr; 101(4-1):042606. PubMed ID: 32422805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.