BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38501673)

  • 1. Interfacial Bonding Induced Charge Transfer in Two-Dimensional Amorphous MoO
    Yang J; Yan P; Chen Z; Liu W; Liu Z; Ma Z; Xu Q
    Chemistry; 2024 May; 30(29):e202400227. PubMed ID: 38501673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots.
    Li H; Xu Q; Wang X; Liu W
    Small; 2018 Jul; 14(28):e1801523. PubMed ID: 29882238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Van der Waals Heterostructures for Synergistically Improved Surface-Enhanced Raman Spectroscopy.
    Cai Q; Gan W; Falin A; Watanabe K; Taniguchi T; Zhuang J; Hao W; Huang S; Tao T; Chen Y; Li LH
    ACS Appl Mater Interfaces; 2020 May; 12(19):21985-21991. PubMed ID: 32319287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of sandwich structures of Ag/analyte/MoO
    B RP; Varier MM; John NS
    Nanotechnology; 2023 Mar; 34(21):. PubMed ID: 36807225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast charge transfer in mixed-dimensional WO
    Lv Q; Tan J; Wang Z; Gu P; Liu H; Yu L; Wei Y; Gan L; Liu B; Li J; Kang F; Cheng HM; Xiong Q; Lv R
    Nat Commun; 2023 May; 14(1):2717. PubMed ID: 37169769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Induced In Situ Formation of a Nonmetallic Plasmonic MoS
    Li J; Xu X; Huang B; Lou Z; Li B
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10047-10053. PubMed ID: 33617225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive Plasmon-Free Surface-Enhanced Raman Spectroscopy with Femtomolar Detection Limit from 2D van der Waals Heterostructure.
    Seo J; Lee J; Kim Y; Koo D; Lee G; Park H
    Nano Lett; 2020 Mar; 20(3):1620-1630. PubMed ID: 32013440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stable and tunable plasmon resonance of molybdenum oxide nanosheets from the ultraviolet to the near-infrared region for ultrasensitive surface-enhanced Raman analysis.
    Wang J; Yang Y; Li H; Gao J; He P; Bian L; Dong F; He Y
    Chem Sci; 2019 Jul; 10(25):6330-6335. PubMed ID: 31341587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. π-Conjugated Small Organic Molecule-Modified 2D MoS
    Liu M; Liu W; Zhang W; Duan P; Shafi M; Zhang C; Hu X; Wang G; Zhang W
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56975-56985. PubMed ID: 36524828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoS
    Sun Y; Zhong W; Wang Y; Xu X; Wang T; Wu L; Du Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34243-34255. PubMed ID: 28901126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved surface-enhanced Raman scattering (SERS) sensitivity to molybdenum oxide nanosheets via the lightning rod effect with application in detecting methylene blue.
    Ren P; Zhou W; Ren X; Zhang X; Sun B; Chen Y; Zheng Q; Li J; Zhang W
    Nanotechnology; 2020 May; 31(22):224002. PubMed ID: 32050177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SERS Detection of Trace Carcinogenic Aromatic Amines Based on Amorphous MoO3 Monolayers.
    Guo L; Meng X; Yu J; Shi W; Qiu L; Qiu K; Li A; Liu Z; Wang Y; Wu J; Lin J; Wang X
    Angew Chem Int Ed Engl; 2024 May; ():e202407597. PubMed ID: 38818663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single sea urchin-MoO
    Prabhu B R; Bramhaiah K; Singh KK; John NS
    Nanoscale Adv; 2019 Jun; 1(6):2426-2434. PubMed ID: 36131958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal oxide semiconductor SERS-active substrates by defect engineering.
    Wu H; Wang H; Li G
    Analyst; 2017 Jan; 142(2):326-335. PubMed ID: 27942616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.
    Liu Y; Ma H; Han XX; Zhao B
    Mater Horiz; 2021 Feb; 8(2):370-382. PubMed ID: 34821260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.
    Zhu L; Meng Z; Hu S; Zhao T; Zhao B
    ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quasi-Metal for Highly Sensitive and Stable Surface-Enhanced Raman Scattering.
    Tian Z; Bai H; Chen C; Ye Y; Kong Q; Li Y; Fan W; Yi W; Xi G
    iScience; 2019 Sep; 19():836-849. PubMed ID: 31505331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Two-dimensional Amorphous Plasmonic Heterostructure of Pd/MoO
    Liu W; Tian Q; Yang J; Zhou Y; Chang H; Cui W; Xu Q
    Chem Asian J; 2021 May; 16(10):1253-1257. PubMed ID: 33780145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible Electrical Control of Interfacial Charge Flow across van der Waals Interfaces.
    Fu S; Jia X; Hassan AS; Zhang H; Zheng W; Gao L; Di Virgilio L; Krasel S; Beljonne D; Tielrooij KJ; Bonn M; Wang HI
    Nano Lett; 2023 Mar; 23(5):1850-1857. PubMed ID: 36799492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct Vapor Growth of 2D Vertical Heterostructures with Tunable Band Alignments and Interfacial Charge Transfer Behaviors.
    Zheng W; Zheng B; Yan C; Liu Y; Sun X; Qi Z; Yang T; Jiang Y; Huang W; Fan P; Jiang F; Ji W; Wang X; Pan A
    Adv Sci (Weinh); 2019 Apr; 6(7):1802204. PubMed ID: 30989032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.