BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 38501843)

  • 1. Surface Crystallization Enhancement and Defect Passivation for Efficiency and Stability Enhancement of Inverted Wide-Bandgap Perovskite Solar Cells.
    Dong Z; Men J; Wang J; Huang Z; Zhai Z; Wang Y; Xie X; Zhang C; Lin Y; Wu J; Zhang J
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressing Halide Segregation via Pyridine-Derivative Isomers Enables Efficient 1.68 eV Bandgap Perovskite Solar Cells.
    Yang L; Fang Z; Jin Y; Feng H; Deng B; Zheng L; Xu P; Chen J; Chen X; Zhou Y; Shi C; Gao W; Yang J; Xu X; Tian C; Xie L; Wei Z
    Adv Mater; 2024 May; 36(21):e2311923. PubMed ID: 38400811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic Exterior and Interfacial Approaches by Colloidal Carbon Quantum Dots for More Stable Perovskite Solar Cells Against UV.
    Zhang D; Hu Z; Vlaic S; Xin C; Pons S; Billot L; Aigouy L; Chen Z
    Small; 2024 Apr; ():e2401505. PubMed ID: 38678539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core/Shell Structured TiO2/CdS Electrode to Enhance the Light Stability of Perovskite Solar Cells.
    Hwang I; Baek M; Yong K
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27863-70. PubMed ID: 26615978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing the Structure-Property Nexus of Wide-Bandgap Perovskite Solar Cells under Thermal Stress.
    Ding D; Yao Y; Hang P; Kan C; Lv X; Ma X; Li B; Jin C; Yang D; Yu X
    Adv Sci (Weinh); 2024 May; ():e2401955. PubMed ID: 38810025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. π-π Stacking at the Perovskite/C
    Zhang A; Li M; Dong C; Ye W; Yang X; Shaker A; Salem MS; Li Z; Yang J; Li X; Xu L; Song H; Chen C; Tang J
    Small; 2024 Apr; ():e2401197. PubMed ID: 38676332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bilateral Production Shield Enabling Highly Efficient Perovskite Photovoltaics.
    Zhu XZ; Wang KL; Jin RJ; Chen JH; Hao YH; Nizamani N; Liu Y; Zhu YH; Zhang ME; Wang ZK; Liao LS
    Small; 2024 May; ():e2401701. PubMed ID: 38705844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on Performance Improvements in Perovskite-Based Ultraviolet Sensors Prepared Using Toluene Antisolvent and CH
    Shin SG; Bark CW; Choi HW
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defect Engineering and Emission Tuning of Wide-Bandgap MAPbCl
    Li Z; Luo Y; Chen Z; Liang H; Lu T; Rao X; Ray A; Abdelhady AL; Yang C; Petralanda U; Bettiol A; Breese M; Dang Z; Gao P
    J Phys Chem Lett; 2024 May; 15(21):5689-5695. PubMed ID: 38767955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilized Wide Bandgap MAPbBr
    Hu M; Bi C; Yuan Y; Bai Y; Huang J
    Adv Sci (Weinh); 2016 Jun; 3(6):1500301. PubMed ID: 27774406
    [No Abstract]   [Full Text] [Related]  

  • 11. Artificial Intelligence-Based, Wavelet-Aided Prediction of Long-Term Outdoor Performance of Perovskite Solar Cells.
    Kouroudis I; Tanko KT; Karimipour M; Ali AB; Kumar DK; Sudhakar V; Gupta RK; Visoly-Fisher I; Lira-Cantu M; Gagliardi A
    ACS Energy Lett; 2024 Apr; 9(4):1581-1586. PubMed ID: 38633992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wide Bandgap Semiconductors for Ultraviolet Photodetectors: Approaches, Applications, and Prospects.
    Cao F; Liu Y; Liu M; Han Z; Xu X; Fan Q; Sun B
    Research (Wash D C); 2024; 7():0385. PubMed ID: 38803505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taurine as a powerful passivator of perovskite layer for efficient and stable perovskite solar cells.
    Hou X; Yuan Z; Liu J; Ma H; Yu F
    RSC Adv; 2023 Jun; 13(25):16872-16879. PubMed ID: 37283868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultraviolet Filtration Passivator for Stable High-Efficiency Perovskite Solar Cells.
    Wang M; Yan G; Su K; Chen W; Brooks KG; Feng Y; Zhang B; Nazeeruddin MK; Zhang Y
    ACS Appl Mater Interfaces; 2022 May; 14(17):19459-19468. PubMed ID: 35438961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Performance and Stability of Perovskite Solar Cells through Surface Defect Passivation with Organic Bidentate Lewis Bases.
    Yan W; Yang W; Zhang K; Yu H; Yang Y; Fan H; Qi Y; Xin H
    ACS Omega; 2022 Sep; 7(36):32383-32392. PubMed ID: 36119984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of quantum dots in perovskite solar cells.
    Zheng F; Liu Y; Ren W; Sunli Z; Xie X; Cui Y; Hao Y
    Nanotechnology; 2021 Sep; 32(48):. PubMed ID: 33647887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring passivators for highly efficient and stable perovskite solar cells.
    Zhang H; Pfeifer L; Zakeeruddin SM; Chu J; Grätzel M
    Nat Rev Chem; 2023 Sep; 7(9):632-652. PubMed ID: 37464018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Ultraviolet Stability and Performance of Wide Bandgap Perovskite Solar Cells Through Ultraviolet Light-Absorbing Passivator.
    Dai Y; Ge X; Shi B; Wang P; Zhao Y; Zhang X
    Small Methods; 2024 Mar; ():e2301793. PubMed ID: 38501843
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.