These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38501853)

  • 1. Direct Synthesis of CuPd Icosahedra Supercrystals Studied by In Situ X-Ray Scattering.
    Derelli D; Frank K; Grote L; Mancini F; Dippel AC; Gutowski O; Nickel B; Koziej D
    Small; 2024 Mar; ():e2311714. PubMed ID: 38501853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-Mediated Nucleation and Growth of fcc and bcc Nanocrystal Superlattices with Designable Assembly of Freestanding 3D Supercrystals.
    Huang X; Suit E; Zhu J; Ge B; Gerdes F; Klinke C; Wang Z
    J Am Chem Soc; 2023 Mar; 145(8):4500-4507. PubMed ID: 36787491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing Driving Forces in Quantum Dot Supercrystal Assembly.
    Marino E; Kodger TE; Wegdam GH; Schall P
    Adv Mater; 2018 Oct; 30(43):e1803433. PubMed ID: 30133015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-pressure behavior of hydrophobically coated gold nanoparticle supercrystals: role of the structure.
    Balédent V; Goldmann C; Ibrahim H; Pansu B
    Soft Matter; 2023 May; 19(17):3113-3120. PubMed ID: 37039530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-directed fabrication of supercrystals from the assembly of polyhedral Au-Pd core-shell nanocrystals and their electrical and optical properties.
    Chiu CY; Chen CK; Chang CW; Jeng US; Tan CS; Yang CW; Chen LJ; Yen TJ; Huang MH
    J Am Chem Soc; 2015 Feb; 137(6):2265-75. PubMed ID: 25632829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing the Surfactant-Mediated Nucleation, Growth, and Superpacking of Gold Supercrystals Using Time and Spatially Resolved X-ray Scattering.
    Yang PW; Thoka S; Lin PC; Su CJ; Sheu HS; Huang MH; Jeng US
    Langmuir; 2017 Apr; 33(13):3253-3261. PubMed ID: 28288275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Shape-Induced Orientation Phase within 3D Nanocrystal Solids.
    Burian M; Karner C; Yarema M; Heiss W; Amenitsch H; Dellago C; Lechner RT
    Adv Mater; 2018 Aug; 30(32):e1802078. PubMed ID: 29944182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring Nanocrystal Self-Assembly in Real Time Using In Situ Small-Angle X-Ray Scattering.
    Lokteva I; Koof M; Walther M; Grübel G; Lehmkühler F
    Small; 2019 May; 15(20):e1900438. PubMed ID: 30993864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of diverse supercrystals from self-assembly of a variety of polyhedral gold nanocrystals.
    Liao CW; Lin YS; Chanda K; Song YF; Huang MH
    J Am Chem Soc; 2013 Feb; 135(7):2684-93. PubMed ID: 23394452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Real-Time Observation of Formation and Self-Assembly of Perovskite Nanocrystals at High Temperature.
    Qiao Z; Wang X; Zhai Y; Yu R; Fang Z; Chen G
    Nano Lett; 2023 Dec; 23(23):10788-10795. PubMed ID: 37982537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal Halide Perovskite Supercrystals: Gold-Bromide Complex Triggered Assembly of CsPbBr
    Wang KH; Yang JN; Ni QK; Yao HB; Yu SH
    Langmuir; 2018 Jan; 34(2):595-602. PubMed ID: 29251940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercrystal structures of polyhedral PbS nanocrystals.
    Zhao Z; Zhang J; Dong F; Yang B
    J Colloid Interface Sci; 2011 Jul; 359(2):351-8. PubMed ID: 21543083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling.
    Bian K; Schunk H; Ye D; Hwang A; Luk TS; Li R; Wang Z; Fan H
    Nat Commun; 2018 Jun; 9(1):2365. PubMed ID: 29915321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creating two self-assembly micro-environments to achieve supercrystals with dual structures using polyhedral nanoparticles.
    Lee YH; Lay CL; Shi W; Lee HK; Yang Y; Li S; Ling XY
    Nat Commun; 2018 Jul; 9(1):2769. PubMed ID: 30018282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-pressure structural stability and elasticity of supercrystals self-assembled from nanocrystals.
    Podsiadlo P; Lee B; Prakapenka VB; Krylova GV; Schaller RD; Demortière A; Shevchenko EV
    Nano Lett; 2011 Feb; 11(2):579-88. PubMed ID: 21175220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing the Effects of the Non-solvent on the Ligand Shell of Nanoparticles and Their Crystallization.
    Lee B; Littrell K; Sha Y; Shevchenko EV
    J Am Chem Soc; 2019 Oct; 141(42):16651-16662. PubMed ID: 31554402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hints of Growth Mechanism Left in Supercrystals.
    Calcaterra HA; Zheng CY; Seifert S; Yao Y; Jiang Y; Mirkin CA; Deng J; Lee B
    ACS Nano; 2023 Aug; 17(16):15999-16007. PubMed ID: 37552879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly versatile laboratory X-ray scattering instrument enabling (nano-)material structure analysis on multiple length scales by covering a scattering vector range of almost five decades.
    Bolze J; Gateshki M
    Rev Sci Instrum; 2019 Dec; 90(12):123103. PubMed ID: 31893848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prismatic Confinement Induces Tunable Orientation in Plasmonic Supercrystals.
    Chaâbani W; Lyu J; Marcone J; Goldmann C; Ten Veen EJM; Dumesnil C; Bizien T; Smallenburg F; Impéror-Clerc M; Constantin D; Hamon C
    ACS Nano; 2024 Apr; 18(13):9566-9575. PubMed ID: 38507585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices.
    Pucci A; Willinger MG; Liu F; Zeng X; Rebuttini V; Clavel G; Bai X; Ungar G; Pinna N
    ACS Nano; 2012 May; 6(5):4382-91. PubMed ID: 22497204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.