These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38501960)
41. Nickelate Superconductivity without Rare-Earth Magnetism: (La,Sr)NiO Osada M; Wang BY; Goodge BH; Harvey SP; Lee K; Li D; Kourkoutis LF; Hwang HY Adv Mater; 2021 Nov; 33(45):e2104083. PubMed ID: 34536042 [TBL] [Abstract][Full Text] [Related]
42. Tuning Superconductivity in FeSe Thin Films via Magnesium Doping. Qiu W; Ma Z; Liu Y; Shahriar Al Hossain M; Wang X; Cai C; Dou SX ACS Appl Mater Interfaces; 2016 Mar; 8(12):7891-6. PubMed ID: 26955971 [TBL] [Abstract][Full Text] [Related]
43. Correlation between scale-invariant normal-state resistivity and superconductivity in an electron-doped cuprate. Sarkar T; Mandal PR; Poniatowski NR; Chan MK; Greene RL Sci Adv; 2019 May; 5(5):eaav6753. PubMed ID: 31114800 [TBL] [Abstract][Full Text] [Related]
44. Proximity-Effect-Induced Anisotropic Superconductivity in a Monolayer Ni-Pb Binary Alloy. Lin YH; Hsu CH; Jang I; Chen CJ; Chiu PM; Lin DS; Wu CT; Chuang FC; Chang PY; Hsu PJ ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35575457 [TBL] [Abstract][Full Text] [Related]
45. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence. Boschini F; da Silva Neto EH; Razzoli E; Zonno M; Peli S; Day RP; Michiardi M; Schneider M; Zwartsenberg B; Nigge P; Zhong RD; Schneeloch J; Gu GD; Zhdanovich S; Mills AK; Levy G; Jones DJ; Giannetti C; Damascelli A Nat Mater; 2018 May; 17(5):416-420. PubMed ID: 29610487 [TBL] [Abstract][Full Text] [Related]
46. Emergence of superconductivity in the cuprates via a universal percolation process. Pelc D; Vučković M; Grbić MS; Požek M; Yu G; Sasagawa T; Greven M; Barišić N Nat Commun; 2018 Oct; 9(1):4327. PubMed ID: 30337539 [TBL] [Abstract][Full Text] [Related]
47. Structure-property correlations in phase-pure B-doped Q-carbon high-temperature superconductor with a record T Bhaumik A; Narayan J Nanoscale; 2019 May; 11(18):9141-9154. PubMed ID: 31038149 [TBL] [Abstract][Full Text] [Related]
48. Enhanced superconductivity in atomically thin TaS2. Navarro-Moratalla E; Island JO; Mañas-Valero S; Pinilla-Cienfuegos E; Castellanos-Gomez A; Quereda J; Rubio-Bollinger G; Chirolli L; Silva-Guillén JA; Agraït N; Steele GA; Guinea F; van der Zant HS; Coronado E Nat Commun; 2016 Mar; 7():11043. PubMed ID: 26984768 [TBL] [Abstract][Full Text] [Related]
49. Free surfaces recast superconductivity in few-monolayer MgB Bekaert J; Bignardi L; Aperis A; van Abswoude P; Mattevi C; Gorovikov S; Petaccia L; Goldoni A; Partoens B; Oppeneer PM; Peeters FM; Milošević MV; Rudolf P; Cepek C Sci Rep; 2017 Oct; 7(1):14458. PubMed ID: 29089566 [TBL] [Abstract][Full Text] [Related]
50. Point nodes persisting far beyond Tc in Bi2212. Kondo T; Malaeb W; Ishida Y; Sasagawa T; Sakamoto H; Takeuchi T; Tohyama T; Shin S Nat Commun; 2015 Jul; 6():7699. PubMed ID: 26158431 [TBL] [Abstract][Full Text] [Related]
52. Interfacial superconductivity in a bi-collinear antiferromagnetically ordered FeTe monolayer on a topological insulator. Manna S; Kamlapure A; Cornils L; Hänke T; Hedegaard EM; Bremholm M; Iversen BB; Hofmann P; Wiebe J; Wiesendanger R Nat Commun; 2017 Jan; 8():14074. PubMed ID: 28094258 [TBL] [Abstract][Full Text] [Related]
53. Optical Sensing of Fractional Quantum Hall Effect in Graphene. Popert A; Shimazaki Y; Kroner M; Watanabe K; Taniguchi T; Imamoğlu A; Smoleński T Nano Lett; 2022 Sep; 22(18):7363-7369. PubMed ID: 36124418 [TBL] [Abstract][Full Text] [Related]
54. Ising Superconductivity and Quantum Phase Transition in Macro-Size Monolayer NbSe Xing Y; Zhao K; Shan P; Zheng F; Zhang Y; Fu H; Liu Y; Tian M; Xi C; Liu H; Feng J; Lin X; Ji S; Chen X; Xue QK; Wang J Nano Lett; 2017 Nov; 17(11):6802-6807. PubMed ID: 28967758 [TBL] [Abstract][Full Text] [Related]
55. Control of Epitaxial BaFe Kang JH; Xie L; Wang Y; Lee H; Campbell N; Jiang J; Ryan PJ; Keavney DJ; Lee JW; Kim TH; Pan X; Chen LQ; Hellstrom EE; Rzchowski MS; Liu ZK; Eom CB Nano Lett; 2018 Oct; 18(10):6347-6352. PubMed ID: 30149722 [TBL] [Abstract][Full Text] [Related]
56. Universal superconducting precursor in three classes of unconventional superconductors. Pelc D; Anderson Z; Yu B; Leighton C; Greven M Nat Commun; 2019 Jun; 10(1):2729. PubMed ID: 31227719 [TBL] [Abstract][Full Text] [Related]
57. Coexistence of two sharp-mode couplings and their unusual momentum dependence in the superconducting state of Bi2Sr2CaCu2O(8+δ) revealed by laser-based angle-resolved photoemission. He J; Zhang W; Bok JM; Mou D; Zhao L; Peng Y; He S; Liu G; Dong X; Zhang J; Wen JS; Xu ZJ; Gu GD; Wang X; Peng Q; Wang Z; Zhang S; Yang F; Chen C; Xu Z; Choi HY; Varma CM; Zhou XJ Phys Rev Lett; 2013 Sep; 111(10):107005. PubMed ID: 25166699 [TBL] [Abstract][Full Text] [Related]
58. Atomically Thin, Optically Isotropic Films with 3D Nanotopography. Lee M; Kang JH; Mujid F; Suh J; Ray A; Park C; Muller DA; Park J Nano Lett; 2021 Sep; 21(17):7291-7297. PubMed ID: 34415174 [TBL] [Abstract][Full Text] [Related]
59. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor. He MQ; Shen JY; Petrović AP; He QL; Liu HC; Zheng Y; Wong CH; Chen QH; Wang JN; Law KT; Sou IK; Lortz R Sci Rep; 2016 Sep; 6():32508. PubMed ID: 27587000 [TBL] [Abstract][Full Text] [Related]
60. Direct observation of the coexistence of the pseudogap and superconducting quasiparticles in Bi2Sr2CaCu2O8 + y by time-resolved optical spectroscopy. Liu YH; Toda Y; Shimatake K; Momono N; Oda M; Ido M Phys Rev Lett; 2008 Sep; 101(13):137003. PubMed ID: 18851484 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]