These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38501982)

  • 1. Elongation and Ligation-Mediated Differential Coding for Label-Free and Locus-Specific Analysis of 8-Oxo-7,8-dihydroguanine in DNA.
    Zhao NN; Wang Q; Yang DM; Li DL; Han Y; Zhao S; Zou X; Zhang CY
    Anal Chem; 2024 Apr; 96(13):5323-5330. PubMed ID: 38501982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bsu polymerase-mediated fluorescence coding for rapid and sensitive detection of 8-oxo-7,8-dihydroguanine in telomeres of cancer cells.
    Li P; Wang ZY; Yueying Li ; Liu LZ; Qiu JG; Zhang CY
    Talanta; 2022 Jun; 243():123340. PubMed ID: 35272158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasensitive and Single-Base Resolution Quantification of 8-Oxo-7,8-dihydroguanine in DNA by Extension and Ligation-Based qPCR.
    Dong JH; Xue CY; Zhong XY; Zhou YL; Zhang XX
    Anal Chem; 2022 Jun; 94(22):8066-8074. PubMed ID: 35613360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of human DNA polymerase kappa inserting dATP opposite an 8-OxoG DNA lesion.
    Vasquez-Del Carpio R; Silverstein TD; Lone S; Swan MK; Choudhury JR; Johnson RE; Prakash S; Prakash L; Aggarwal AK
    PLoS One; 2009 Jun; 4(6):e5766. PubMed ID: 19492058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Next-Generation Sequencing-Based Analysis of the Roles of DNA Polymerases ν and θ in the Replicative Bypass of 8-Oxo-7,8-dihydroguanine in Human Cells.
    Liu Y; Zhu X; Wang Z; Dai X; You C
    ACS Chem Biol; 2022 Aug; 17(8):2315-2319. PubMed ID: 35815634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Role for N6-Methyladenine in DNA Damage Repair.
    Zhang X; Blumenthal RM; Cheng X
    Trends Biochem Sci; 2021 Mar; 46(3):175-183. PubMed ID: 33077363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus.
    Maxwell BA; Suo Z
    Biochemistry; 2012 Apr; 51(16):3485-96. PubMed ID: 22471521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a damage site-specific fluorescent biosensor for single-molecule detection of DNA damage.
    Zhang Y; Han Y; Zou X; Xu Q; Ma F; Zhang CY
    Talanta; 2021 Dec; 235():122809. PubMed ID: 34517666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics, structure, and mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine bypass by human DNA polymerase η.
    Patra A; Nagy LD; Zhang Q; Su Y; Müller L; Guengerich FP; Egli M
    J Biol Chem; 2014 Jun; 289(24):16867-82. PubMed ID: 24759104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template.
    Sampoli Benítez B; Barbati ZR; Arora K; Bogdanovic J; Schlick T
    Biophys J; 2013 Dec; 105(11):2559-68. PubMed ID: 24314086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fidelity of nucleotide insertion at 8-oxo-7,8-dihydroguanine by mammalian DNA polymerase delta. Steady-state and pre-steady-state kinetic analysis.
    Einolf HJ; Guengerich FP
    J Biol Chem; 2001 Feb; 276(6):3764-71. PubMed ID: 11110788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical identification of a hydroperoxide derivative of the free 8-oxo-7,8-dihydroguanine base.
    Hajas G; Bacsi A; Aguilerra-Aguirre L; German P; Radak Z; Sur S; Hazra TK; Boldogh I
    Free Radic Biol Med; 2012 Feb; 52(4):749-56. PubMed ID: 22198182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress.
    Radak Z; Boldogh I
    Free Radic Biol Med; 2010 Aug; 49(4):587-96. PubMed ID: 20483371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases.
    Boiteux S; Coste F; Castaing B
    Free Radic Biol Med; 2017 Jun; 107():179-201. PubMed ID: 27903453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trinucleotide repeat DNA alters structure to minimize the thermodynamic impact of 8-oxo-7,8-dihydroguanine.
    Volle CB; Jarem DA; Delaney S
    Biochemistry; 2012 Jan; 51(1):52-62. PubMed ID: 22148399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta.
    Carlson KD; Washington MT
    Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide incorporation against 7,8-dihydro-8-oxoguanine is influenced by neighboring base sequences in TLS DNA polymerase reaction.
    Yung C; Suzuki T; Okugawa Y; Kawakami A; Loakes D; Negishi K; Negishi T
    Nucleic Acids Symp Ser (Oxf); 2007; (51):49-50. PubMed ID: 18029580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion.
    Batra VK; Shock DD; Beard WA; McKenna CE; Wilson SH
    Proc Natl Acad Sci U S A; 2012 Jan; 109(1):113-8. PubMed ID: 22178760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion.
    Freudenthal BD; Beard WA; Wilson SH
    Nucleic Acids Res; 2013 Feb; 41(3):1848-58. PubMed ID: 23267011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Not breathing is not an option: How to deal with oxidative DNA damage.
    Markkanen E
    DNA Repair (Amst); 2017 Nov; 59():82-105. PubMed ID: 28963982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.