BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 38502008)

  • 1. A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data.
    Wolfson J; Bandyopadhyay S; Elidrisi M; Vazquez-Benitez G; Vock DM; Musgrove D; Adomavicius G; Johnson PE; O'Connor PJ
    Stat Med; 2015 Sep; 34(21):2941-57. PubMed ID: 25980520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal dynamic treatment regime estimation using information extraction from unstructured clinical text.
    Zhou N; Brook RD; Dinov ID; Wang L
    Biom J; 2022 Apr; 64(4):805-817. PubMed ID: 35112726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective.
    Bai X; Tsiatis AA; Lu W; Song R
    Lifetime Data Anal; 2017 Oct; 23(4):585-604. PubMed ID: 27480339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-stage optimal dynamic treatment regimes for survival outcomes with dependent censoring.
    Cho H; Holloway ST; Couper DJ; Kosorok MR
    Biometrika; 2023 Jun; 110(2):395-410. PubMed ID: 37197739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating dynamic treatment regimes for ordinal outcomes with household interference: Application in household smoking cessation.
    Jiang C; Thompson M; Wallace M
    Stat Methods Med Res; 2024 Jun; 33(6):981-995. PubMed ID: 38623615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Q- and A-learning Methods for Estimating Optimal Dynamic Treatment Regimes.
    Schulte PJ; Tsiatis AA; Laber EB; Davidian M
    Stat Sci; 2014 Nov; 29(4):640-661. PubMed ID: 25620840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of optimal dynamic treatment regimes.
    Zhao YQ; Laber EB
    Clin Trials; 2014 Aug; 11(4):400-407. PubMed ID: 24872361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iqLearn: Interactive Q-Learning in R.
    Linn KA; Laber EB; Stefanski LA
    J Stat Softw; 2015 Feb; 64(1):. PubMed ID: 26900385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative effectiveness of dynamic treatment regimes: an application of the parametric g-formula.
    Young JG; Cain LE; Robins JM; O'Reilly EJ; Hernán MA
    Stat Biosci; 2011 Sep; 3(1):119-143. PubMed ID: 24039638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Optimal Dynamic Treatment Regimes from Longitudinal Data.
    Williams NT; Hoffman KL; Díaz I; Rudolph KE
    Am J Epidemiol; 2024 Jun; ():. PubMed ID: 38879744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outcome trajectory estimation for optimal dynamic treatment regimes with repeated measures.
    Zhang Y; Vock DM; Patrick ME; Finestack LH; Murray TA
    J R Stat Soc Ser C Appl Stat; 2023 Aug; 72(4):976-991. PubMed ID: 37662554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DYNAMIC RISK PREDICTION TRIGGERED BY INTERMEDIATE EVENTS USING SURVIVAL TREE ENSEMBLES.
    Sun Y; Chiou SH; Wu CO; McGarry M; Huang CY
    Ann Appl Stat; 2023 Jun; 17(2):1375-1397. PubMed ID: 37284167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic treatment regimes: technical challenges and applications.
    Laber EB; Lizotte DJ; Qian M; Pelham WE; Murphy SA
    Electron J Stat; 2014; 8(1):1225-1272. PubMed ID: 25356091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suggestions on Using Machine Learning Models and Cautions for Analyzing Censored Time-To-Event Outcomes.
    Shi Y; Horiguchi M; Lu Y
    JCO Precis Oncol; 2024 May; 8():e2400220. PubMed ID: 38781547
    [No Abstract]   [Full Text] [Related]  

  • 15. A matching-based machine learning approach to estimating optimal dynamic treatment regimes with time-to-event outcomes.
    Wang X; Lee H; Haaland B; Kerrigan K; Puri S; Akerley W; Shen J
    Stat Methods Med Res; 2024 May; 33(5):794-806. PubMed ID: 38502008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting.
    Vock DM; Wolfson J; Bandyopadhyay S; Adomavicius G; Johnson PE; Vazquez-Benitez G; O'Connor PJ
    J Biomed Inform; 2016 Jun; 61():119-31. PubMed ID: 26992568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model selection for survival individualized treatment rules using the jackknife estimator.
    Honvoh GD; Cho H; Kosorok MR
    BMC Med Res Methodol; 2022 Dec; 22(1):328. PubMed ID: 36550398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating Real-World Tumor Burden Endpoints from Electronic Health Record Data: Comparison of RECIST, Radiology-Anchored, and Clinician-Anchored Approaches for Abstracting Real-World Progression in Non-Small Cell Lung Cancer.
    Griffith SD; Tucker M; Bowser B; Calkins G; Chang CJ; Guardino E; Khozin S; Kraut J; You P; Schrag D; Miksad RA
    Adv Ther; 2019 Aug; 36(8):2122-2136. PubMed ID: 31140124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of dynamic treatment regimes via inverse probability weighting.
    Hernán MA; Lanoy E; Costagliola D; Robins JM
    Basic Clin Pharmacol Toxicol; 2006 Mar; 98(3):237-42. PubMed ID: 16611197
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.