These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 38502063)
1. A prenyltransferase participates in the biosynthesis of anthraquinones in Rubia cordifolia. Liu C; Wang R; Wang S; Chen T; Lyu C; Kang C; Wan X; Guo J; Li Q; Huang L; Guo L Plant Physiol; 2024 Jul; 195(4):2860-2876. PubMed ID: 38502063 [TBL] [Abstract][Full Text] [Related]
2. Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene. Veremeichik GN; Bulgakov VP; Shkryl YN; Silantieva SA; Makhazen DS; Tchernoded GK; Mischenko NP; Fedoreyev SA; Vasileva EA J Biotechnol; 2019 Dec; 306():38-46. PubMed ID: 31526834 [TBL] [Abstract][Full Text] [Related]
3. Effects of lovastatin, clomazone and methyl jasmonate treatment on the accumulation of purpurin and mollugin in cell suspension cultures of Rubia cordifolia. Fan X; Hu GS; Li N; Han ZF; Jia JM Chin J Nat Med; 2013 Jul; 11(4):396-400. PubMed ID: 23845549 [TBL] [Abstract][Full Text] [Related]
4. Increase of anthraquinone content in Rubia cordifolia cells transformed by native and constitutively active forms of the AtCPK1 gene. Shkryl YN; Veremeichik GN; Makhazen DS; Silantieva SA; Mishchenko NP; Vasileva EA; Fedoreyev SA; Bulgakov VP Plant Cell Rep; 2016 Sep; 35(9):1907-16. PubMed ID: 27251124 [TBL] [Abstract][Full Text] [Related]
5. Role of reactive oxygen species and proline cycle in anthraquinone accumulation in Rubia tinctorum cell suspension cultures subjected to methyl jasmonate elicitation. Perassolo M; Quevedo CV; Busto VD; Giulietti AM; Talou JR Plant Physiol Biochem; 2011 Jul; 49(7):758-63. PubMed ID: 21511484 [TBL] [Abstract][Full Text] [Related]
6. Anthraquinone Production from Cell and Organ Cultures of Murthy HN; Joseph KS; Paek KY; Park SY Metabolites; 2022 Dec; 13(1):. PubMed ID: 36676964 [TBL] [Abstract][Full Text] [Related]
7. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Shkryl YN; Veremeichik GN; Bulgakov VP; Tchernoded GK; Mischenko NP; Fedoreyev SA; Zhuravlev YN Biotechnol Bioeng; 2008 May; 100(1):118-25. PubMed ID: 18023060 [TBL] [Abstract][Full Text] [Related]
8. Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium-dependent protein kinase gene. Shkryl YN; Veremeichik GN; Bulgakov VP; Zhuravlev YN Biotechnol Bioeng; 2011 Jul; 108(7):1734-8. PubMed ID: 21328322 [TBL] [Abstract][Full Text] [Related]
9. Effects of Ca(2+) channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes. Bulgakov VP; Tchernoded GK; Mischenko NP; Shkryl YN; Glazunov VP; Fedoreyev SA; Zhuravlev YN Planta; 2003 Jul; 217(3):349-55. PubMed ID: 14520561 [TBL] [Abstract][Full Text] [Related]
10. Biosynthetic origin of 2-geranyl-1,4-naphthoquinone and its related anthraquinone in a Sesamum indicum hairy root culture. Furumoto T; Hoshikuma A Phytochemistry; 2011 Jun; 72(9):871-4. PubMed ID: 21511314 [TBL] [Abstract][Full Text] [Related]
11. Effect of shear stress on anthraquinones production by Rubia tinctorum suspension cultures. Busto VD; Rodríguez-Talou J; Giulietti AM; Merchuk JC Biotechnol Prog; 2008; 24(1):175-81. PubMed ID: 18085790 [TBL] [Abstract][Full Text] [Related]
12. Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway. Bulgakov VP; Tchernoded GK; Mischenko NP; Shkryl YN; Glazunov VP; Fedoreyev SA; Zhuravlev YN Biochemistry (Mosc); 2003 Jul; 68(7):795-801. PubMed ID: 12946262 [TBL] [Abstract][Full Text] [Related]
13. How did plants evolve the prenylation of specialized phenolic metabolites by means of UbiA prenyltransferases? Munakata R; Yazaki K Curr Opin Plant Biol; 2024 Oct; 81():102601. PubMed ID: 38991464 [TBL] [Abstract][Full Text] [Related]
14. Chemistry, Biosynthesis, Physicochemical and Biological Properties of Rubiadin: A Promising Natural Anthraquinone for New Drug Discovery and Development. Watroly MN; Sekar M; Fuloria S; Gan SH; Jeyabalan S; Wu YS; Subramaniyan V; Sathasivam KV; Ravi S; Mat Rani NNI; Lum PT; Vaijanathappa J; Meenakshi DU; Mani S; Fuloria NK Drug Des Devel Ther; 2021; 15():4527-4549. PubMed ID: 34764636 [TBL] [Abstract][Full Text] [Related]
15. A basidomycetous hydroxynaphthalene-prenylating enzyme exhibits promiscuity toward prenyl donors. Martin A; Dierlamm N; Zocher G; Li SM Appl Microbiol Biotechnol; 2023 Aug; 107(15):4845-4852. PubMed ID: 37326682 [TBL] [Abstract][Full Text] [Related]
16. Characterization and antimicrobial evaluation of anthraquinones and triterpenes from Chandrasekhar G; Shukla M; Kaul G; K R; Chopra S; Pandey R J Asian Nat Prod Res; 2023 Nov; 25(11):1110-1116. PubMed ID: 37010931 [TBL] [Abstract][Full Text] [Related]
17. ISSR Characterization and Quantification of Purpurin and Alizarin in Rubia cordifolia L. Populations from India. Natarajan S; Mishra P; Vadivel M; Basha MG; Kumar A; Velusamy S Biochem Genet; 2019 Feb; 57(1):56-72. PubMed ID: 30039443 [TBL] [Abstract][Full Text] [Related]
18. Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Yazaki K; Sasaki K; Tsurumaru Y Phytochemistry; 2009; 70(15-16):1739-45. PubMed ID: 19819506 [TBL] [Abstract][Full Text] [Related]