These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38502348)
1. Berberine chloride suppresses pancreatic adenocarcinoma proliferation and growth by targeting inflammation-related genes: an in silico analysis with in vitro and vivo validation. Ruan LJ; Jiao JY; Cheng C; Zhang Y; Cao ZQ; He B; Chen Z Cancer Chemother Pharmacol; 2024 Aug; 94(2):169-181. PubMed ID: 38502348 [TBL] [Abstract][Full Text] [Related]
2. Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression. Cheng CS; Tan HY; Wang N; Chen L; Meng Z; Chen Z; Feng Y Clin Transl Med; 2021 Jun; 11(6):e467. PubMed ID: 34185423 [TBL] [Abstract][Full Text] [Related]
3. "Huanglianjiedu Decoction" Against Pancreatic Adenocarcinoma Proliferation of by Downregulating the PI3K/AKT/mTOR and MAPK/ERK1/2 Signaling Pathways. Dong Md S; Xu Md P; Yang Md P; Jiao Md J; Cheng Md PhD CS; Chen Md PhD L J Evid Based Integr Med; 2024; 29():2515690X241291381. PubMed ID: 39410848 [TBL] [Abstract][Full Text] [Related]
4. Berberine inhibits gastric cancer development and progression by regulating the JAK2/STAT3 pathway and downregulating IL-6. Xu M; Ren L; Fan J; Huang L; Zhou L; Li X; Ye X Life Sci; 2022 Feb; 290():120266. PubMed ID: 34968467 [TBL] [Abstract][Full Text] [Related]
5. Integrated bioinformatics analysis identifies PCSK9 as a prognosticator correlated with lipid metabolism in pancreatic adenocarcinoma. Zhou S; Guo Q; Chen A; Li X; Zou X World J Surg Oncol; 2024 Sep; 22(1):256. PubMed ID: 39342295 [TBL] [Abstract][Full Text] [Related]
6. Berberine inhibits proliferation and induces G0/G1 phase arrest in colorectal cancer cells by downregulating IGF2BP3. Zhang Y; Liu X; Yu M; Xu M; Xiao Y; Ma W; Huang L; Li X; Ye X Life Sci; 2020 Nov; 260():118413. PubMed ID: 32926933 [TBL] [Abstract][Full Text] [Related]
7. Ginsenoside Rg3 suppresses vasculogenic mimicry by impairing DVL3-maintained stemness via PAAD cell-derived exosomal miR-204 in pancreatic adenocarcinoma. Cai X; Wang Z; Lin S; Chen H; Bu H Phytomedicine; 2024 Apr; 126():155402. PubMed ID: 38350242 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of an Inflammatory Response-Related Gene Signature for Predicting the Prognosis of Pancreatic Adenocarcinoma. Deng ZL; Zhou DZ; Cao SJ; Li Q; Zhang JF; Xie H Inflammation; 2022 Aug; 45(4):1732-1751. PubMed ID: 35322324 [TBL] [Abstract][Full Text] [Related]
9. Machine learning-based identification of biomarkers and drugs in immunologically cold and hot pancreatic adenocarcinomas. Ge J; Ge J; Tang G; Xiong D; Zhu D; Ding X; Zhou X; Sang M J Transl Med; 2024 Aug; 22(1):775. PubMed ID: 39152432 [TBL] [Abstract][Full Text] [Related]
10. System analysis based on the pyroptosis-related genes identifies GSDMC as a novel therapy target for pancreatic adenocarcinoma. Yan C; Niu Y; Li F; Zhao W; Ma L J Transl Med; 2022 Oct; 20(1):455. PubMed ID: 36199146 [TBL] [Abstract][Full Text] [Related]
11. ARHGAP25 Inhibits Pancreatic Adenocarcinoma Growth by Suppressing Glycolysis via AKT/mTOR Pathway. Huang WK; Chen Y; Su H; Chen TY; Gao J; Liu Y; Yeh CN; Li S Int J Biol Sci; 2021; 17(7):1808-1820. PubMed ID: 33994864 [TBL] [Abstract][Full Text] [Related]
12. miR‑32‑5p suppresses the proliferation and migration of pancreatic adenocarcinoma cells by targeting TLDC1. Yuan P; Tang C; Chen B; Lei P; Song J; Xin G; Wang Z; Hui Y; Yao W; Wang G; Zhao G Mol Med Rep; 2021 Nov; 24(5):. PubMed ID: 34468015 [TBL] [Abstract][Full Text] [Related]
13. Berberine activates caspase-9/cytochrome c-mediated apoptosis to suppress triple-negative breast cancer cells in vitro and in vivo. Zhao Y; Jing Z; Lv J; Zhang Z; Lin J; Cao X; Zhao Z; Liu P; Mao W Biomed Pharmacother; 2017 Nov; 95():18-24. PubMed ID: 28826092 [TBL] [Abstract][Full Text] [Related]
14. Integrating network pharmacology and experimental models to investigate the efficacy of QYHJ on pancreatic cancer. Yang PW; Xu PL; Cheng CS; Jiao JY; Wu Y; Dong S; Xie J; Zhu XY J Ethnopharmacol; 2022 Oct; 297():115516. PubMed ID: 35817247 [TBL] [Abstract][Full Text] [Related]
15. Kuang W; Wang X; Ding J; Li J; Ji M; Chen W; Wang L; Yang P Front Immunol; 2022; 13():805311. PubMed ID: 35154122 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive characterization of extracellular matrix-related genes in PAAD identified a novel prognostic panel related to clinical outcomes and immune microenvironment: A silico analysis with Chen X; Yuan Q; Liu J; Xia S; Shi X; Su Y; Wang Z; Li S; Shang D Front Immunol; 2022; 13():985911. PubMed ID: 36311789 [TBL] [Abstract][Full Text] [Related]
17. A prospective prognostic signature for pancreatic adenocarcinoma based on ubiquitination-related mRNA-lncRNA with experimental validation in vitro and vivo. Wang Z; Yuan Q; Chen X; Luo F; Shi X; Guo F; Ren J; Li S; Shang D Funct Integr Genomics; 2023 Aug; 23(3):263. PubMed ID: 37540295 [TBL] [Abstract][Full Text] [Related]
18. tRNA-derived RNA fragment, tRF-18-8R6546D2, promotes pancreatic adenocarcinoma progression by directly targeting ASCL2. Lan S; Liu S; Wang K; Chen W; Zheng D; Zhuang Y; Zhang S Gene; 2024 Nov; 927():148739. PubMed ID: 38955307 [TBL] [Abstract][Full Text] [Related]
19. Berberine alleviates ulcerative colitis by inhibiting inflammation through targeting IRGM1. Meng G; Li P; Du X; Feng X; Qiu F Phytomedicine; 2024 Oct; 133():155909. PubMed ID: 39068762 [TBL] [Abstract][Full Text] [Related]
20. Pyroptosis regulators exert crucial functions in prognosis, progression and immune microenvironment of pancreatic adenocarcinoma: a bioinformatic and in vitro research. Bai Z; Xu F; Feng X; Wu Y; Lv J; Shi Y; Pei H Bioengineered; 2022 Jan; 13(1):1717-1735. PubMed ID: 35000541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]