BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38502504)

  • 1. Isolation of High-Quality Plastids from the Diatom Phaeodactylum tricornutum.
    Hu F; Yin W; Huang T; Hu H
    Methods Mol Biol; 2024; 2776():177-183. PubMed ID: 38502504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Plastid Fractions from the Diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum.
    Schober AF; Flori S; Finazzi G; Kroth PG; Bártulos CR
    Methods Mol Biol; 2018; 1829():189-203. PubMed ID: 29987723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomes reveal the lipid metabolic network in the complex plastid of Phaeodactylum tricornutum.
    Huang T; Pan Y; Maréchal E; Hu H
    Plant J; 2024 Jan; 117(2):385-403. PubMed ID: 37733835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum.
    Flori S; Jouneau PH; Finazzi G; Maréchal E; Falconet D
    Protist; 2016 Jun; 167(3):254-67. PubMed ID: 27179349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for glycoprotein transport into complex plastids.
    Peschke M; Moog D; Klingl A; Maier UG; Hempel F
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10860-5. PubMed ID: 23754425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diatom plastids depend on nucleotide import from the cytosol.
    Ast M; Gruber A; Schmitz-Esser S; Neuhaus HE; Kroth PG; Horn M; Haferkamp I
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3621-6. PubMed ID: 19221027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shuttling of (deoxy-) purine nucleotides between compartments of the diatom Phaeodactylum tricornutum.
    Chu L; Gruber A; Ast M; Schmitz-Esser S; Altensell J; Neuhaus HE; Kroth PG; Haferkamp I
    New Phytol; 2017 Jan; 213(1):193-205. PubMed ID: 27504715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ERAD-derived preprotein transport across the second outermost plastid membrane of diatoms.
    Hempel F; Bullmann L; Lau J; Zauner S; Maier UG
    Mol Biol Evol; 2009 Aug; 26(8):1781-90. PubMed ID: 19377060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the Subcellular Localization of Proteins in the Different Membranes of Diatom Secondary Plastid.
    Liu X; Gong Y
    Methods Mol Biol; 2024; 2776():185-196. PubMed ID: 38502505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids.
    Kilian O; Kroth PG
    Plant J; 2005 Jan; 41(2):175-83. PubMed ID: 15634195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inventory of fatty acid desaturases in the pennate diatom Phaeodactylum tricornutum.
    Dolch LJ; Maréchal E
    Mar Drugs; 2015 Mar; 13(3):1317-39. PubMed ID: 25786062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of subcellular local pH in the marine diatom Phaeodactylum tricornutum.
    Shimakawa G; Yashiro E; Matsuda Y
    Physiol Plant; 2023; 175(6):e14086. PubMed ID: 38148208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids.
    Moog D; Nozawa A; Tozawa Y; Kamikawa R
    Sci Rep; 2020 Jan; 10(1):1167. PubMed ID: 31980711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo characterization of diatom multipartite plastid targeting signals.
    Apt KE; Zaslavkaia L; Lippmeier JC; Lang M; Kilian O; Wetherbee R; Grossman AR; Kroth PG
    J Cell Sci; 2002 Nov; 115(Pt 21):4061-9. PubMed ID: 12356911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.
    Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C
    PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage.
    Gruber A; Rocap G; Kroth PG; Armbrust EV; Mock T
    Plant J; 2015 Feb; 81(3):519-28. PubMed ID: 25438865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting proteins to diatom plastids involves transport through an endoplasmic reticulum.
    Bhaya D; Grossman A
    Mol Gen Genet; 1991 Oct; 229(3):400-4. PubMed ID: 1944228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Filling the gap, evolutionarily conserved Omp85 in plastids of chromalveolates.
    Bullmann L; Haarmann R; Mirus O; Bredemeier R; Hempel F; Maier UG; Schleiff E
    J Biol Chem; 2010 Feb; 285(9):6848-56. PubMed ID: 20042599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New mechanistic insights into pre-protein transport across the second outermost plastid membrane of diatoms.
    Hempel F; Felsner G; Maier UG
    Mol Microbiol; 2010 May; 76(3):793-801. PubMed ID: 20345650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein transport into "complex" diatom plastids utilizes two different targeting signals.
    Lang M; Apt KE; Kroth PG
    J Biol Chem; 1998 Nov; 273(47):30973-8. PubMed ID: 9812993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.