These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38502611)

  • 1. Motor Learning in Robot-Based Haptic Dyads: A Review.
    Waters EL; Johnson MJ
    IEEE Trans Haptics; 2024 Mar; PP():. PubMed ID: 38502611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trends in robot-assisted and virtual reality-assisted neuromuscular therapy: a systematic review of health-related multiplayer games.
    Baur K; Schättin A; de Bruin ED; Riener R; Duarte JE; Wolf P
    J Neuroeng Rehabil; 2018 Nov; 15(1):107. PubMed ID: 30454009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Dyadic Haptic Collaboration on Ankle Motor Learning and Task Performance.
    Kim SJ; Wen Y; Ludvig D; Kucuktabak EB; Short MR; Lynch K; Hargrove L; Perreault EJ; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():416-425. PubMed ID: 36449583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of skill level matching in dyadic interaction on learning of a tracing task.
    Kager S; Hussain A; Cherpin A; Melendez-Calderon A; Takagi A; Endo S; Burdet E; Hirche S; Ang MH; Campolo D
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():824-829. PubMed ID: 31374732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training.
    Bernardoni F; Ozen O; Buetler K; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():760-765. PubMed ID: 31374722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-machine-human interaction in motor control and rehabilitation: a review.
    Küçüktabak EB; Kim SJ; Wen Y; Lynch K; Pons JL
    J Neuroeng Rehabil; 2021 Dec; 18(1):183. PubMed ID: 34961530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Motor Variability During Robotic Assistance Enhances Motor Learning of Dynamic Tasks.
    Özen Ö; Buetler KA; Marchal-Crespo L
    Front Neurosci; 2020; 14():600059. PubMed ID: 33603642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dyad motor learning in a wrist-robotic environment: Learning together is better than learning alone.
    Winter LV; Panzer S; Konczak J
    Hum Mov Sci; 2024 Feb; 93():103172. PubMed ID: 38168644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive and motor cortex activation during robot-assisted multi-sensory interactive motor rehabilitation training: An fNIRS based pilot study.
    Zheng J; Ma Q; He W; Huang Y; Shi P; Li S; Yu H
    Front Hum Neurosci; 2023; 17():1089276. PubMed ID: 36845877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptic Training: Which Types Facilitate (re)Learning of Which Motor Task and for Whom? Answers by a Review.
    Basalp E; Wolf P; Marchal-Crespo L
    IEEE Trans Haptics; 2021; 14(4):722-739. PubMed ID: 34388095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the Motivation to Train Through Haptic Social Interaction - Pilot study.
    Nehrujee A; Ivanova E; Srinivasan S; Balasubramanian S; Burdet E
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual Physical Coupling of Two Lower-Limb Exoskeletons.
    Kucuktabak EB; Wen Y; Short M; Demirbas E; Lynch K; Pons J
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration.
    Liu J; Cramer SC; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2006 Aug; 3():20. PubMed ID: 16945148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human-Human connected dyads learning a visuomotor rotation in a movement tracking task
    Gendy A; Demasi M; Patton J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6613-6618. PubMed ID: 34892624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H-Man: a planar, H-shape cabled differential robotic manipulandum for experiments on human motor control.
    Campolo D; Tommasino P; Gamage K; Klein J; Hughes CM; Masia L
    J Neurosci Methods; 2014 Sep; 235():285-97. PubMed ID: 25058923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Haptic Human-Human Interaction During an Ankle Tracking Task: Effects of Virtual Connection Stiffness.
    Short MR; Ludvig D; Kucuktabak EB; Wen Y; Vianello L; Perreault EJ; Hargrove L; Lynch K; Pons JL
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3864-3873. PubMed ID: 37747854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.
    De Santis D; Zenzeri J; Casadio M; Masia L; Riva A; Morasso P; Squeri V
    Front Hum Neurosci; 2014; 8():1037. PubMed ID: 25601833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.