These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38502611)

  • 21. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.
    De Santis D; Zenzeri J; Casadio M; Masia L; Riva A; Morasso P; Squeri V
    Front Hum Neurosci; 2014; 8():1037. PubMed ID: 25601833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutual Skill Learning and Adaptability to Others via Haptic Interaction.
    Saracbasi OO; Harwin W; Kondo T; Hayashi Y
    Front Neurorobot; 2021; 15():760132. PubMed ID: 34924991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Motor learning perspectives on haptic training for the upper extremities.
    Williams CK; Carnahan H
    IEEE Trans Haptics; 2014; 7(2):240-50. PubMed ID: 24968385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of robots for augmentative manipulation during play activities among children with motor impairment: a scoping review.
    Espín-Tello SM; Gardeazabal X; Abascal J
    Disabil Rehabil; 2023 Mar; 45(5):896-910. PubMed ID: 35260000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robotic arm training in neurorehabilitation enhanced by augmented reality - a usability and feasibility study.
    de Crignis AC; Ruhnau ST; Hösl M; Lefint J; Amberger T; Dressnandt J; Brunner H; Müller F
    J Neuroeng Rehabil; 2023 Aug; 20(1):105. PubMed ID: 37568195
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving Haptic Response for Contextual Human Robot Interaction.
    Mugisha S; Guda VK; Chevallereau C; Zoppi M; Molfino R; Chablat D
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hiding Assistive Robots During Training in Immersive VR Does Not Affect Users' Motivation, Presence, Embodiment, Performance, Nor Visual Attention.
    Wenk N; Jordi MV; Buetler KA; Marchal-Crespo L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():390-399. PubMed ID: 35085087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children.
    Calderita LV; Manso LJ; Bustos P; Suárez-Mejías C; Fernández F; Bandera A
    JMIR Rehabil Assist Technol; 2014 Oct; 1(1):e1. PubMed ID: 28582242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effectiveness of robotic training depends on motor task characteristics.
    Marchal-Crespo L; Rappo N; Riener R
    Exp Brain Res; 2017 Dec; 235(12):3799-3816. PubMed ID: 28983676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Paradigm Shift: Rehabilitation Robotics, Cognitive Skills Training, and Function After Stroke.
    Fasoli SE; Adans-Dester CP
    Front Neurol; 2019; 10():1088. PubMed ID: 31681154
    [No Abstract]   [Full Text] [Related]  

  • 33. Robot applications for autism: a comprehensive review.
    Saleh MA; Hanapiah FA; Hashim H
    Disabil Rehabil Assist Technol; 2021 Aug; 16(6):580-602. PubMed ID: 32706602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wrapping Haptic Displays Around Robot Arms to Communicate Learning.
    Valdivia AA; Habibian S; Mendenhall CA; Fuentes F; Shailly R; Losey DP; Blumenschein LH
    IEEE Trans Haptics; 2023 Jan; PP():. PubMed ID: 37022237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Teaching Motor Skills Without a Motor: A Semi-Passive Robot to Facilitate Learning.
    Augenstein TE; Remy CD; Claflin ES; Ranganathan R; Krishnan C
    IEEE Trans Haptics; 2024; 17(3):346-359. PubMed ID: 37938965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction with a reactive partner improves learning in contrast to passive guidance.
    Ivanova E; Eden J; Carboni G; Krüger J; Burdet E
    Sci Rep; 2022 Sep; 12(1):15821. PubMed ID: 36138031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Effects of Different Motor Teaching Strategies on Learning a Complex Motor Task.
    Kunavar T; Jamšek M; Avila-Mireles EJ; Rueckert E; Peternel L; Babič J
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robot assistance of motor learning: A neuro-cognitive perspective.
    Heuer H; Lüttgen J
    Neurosci Biobehav Rev; 2015 Sep; 56():222-40. PubMed ID: 26192105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bayesian Estimation of Potential Performance Improvement Elicited by Robot-Guided Training.
    Takai A; Lisi G; Noda T; Teramae T; Imamizu H; Morimoto J
    Front Neurosci; 2021; 15():704402. PubMed ID: 34744603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.