BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38502690)

  • 21. Bacterial Chat: Intestinal Metabolites and Signals in Host-Microbiota-Pathogen Interactions.
    Lustri BC; Sperandio V; Moreira CG
    Infect Immun; 2017 Dec; 85(12):. PubMed ID: 28947641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sialic acid plays a pivotal role in licensing
    Liang Q; Ma C; Crowley SM; Allaire JM; Han X; Chong RWW; Packer NH; Yu HB; Vallance BA
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301115120. PubMed ID: 37399418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathogenic and non-pathogenic
    Stromberg ZR; Van Goor A; Redweik GAJ; Wymore Brand MJ; Wannemuehler MJ; Mellata M
    Dis Model Mech; 2018 Nov; 11(11):. PubMed ID: 30275104
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbiota and Pathogen Proteases Modulate Type III Secretion Activity in Enterohemorrhagic Escherichia coli.
    Cameron EA; Curtis MM; Kumar A; Dunny GM; Sperandio V
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catabolite and Oxygen Regulation of Enterohemorrhagic Escherichia coli Virulence.
    Carlson-Banning KM; Sperandio V
    mBio; 2016 Nov; 7(6):. PubMed ID: 27879335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TLR9 limits enteric antimicrobial responses and promotes microbiota-based colonisation resistance during Citrobacter rodentium infection.
    Yang H; Yu HB; Bhinder G; Ryz NR; Lee J; Yang H; Fotovati A; Gibson DL; Turvey SE; Reid GS; Vallance BA
    Cell Microbiol; 2019 Jul; 21(7):e13026. PubMed ID: 30893495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enterohaemorrhagic E. coli utilizes host- and microbiota-derived L-malate as a signaling molecule for intestinal colonization.
    Liu B; Jiang L; Liu Y; Sun H; Yan J; Kang C; Yang B
    Nat Commun; 2023 Nov; 14(1):7227. PubMed ID: 37945607
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Liu B; Liu Y; Yang B; Wang Q; Liu X; Qin J; Zhao K; Li F; Feng X; Li L; Wu P; Liu M; Zhu S; Feng L; Wang L
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2212436119. PubMed ID: 36409903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Norepinephrine Metabolite 3,4-Dihydroxymandelic Acid Is Produced by the Commensal Microbiota and Promotes Chemotaxis and Virulence Gene Expression in Enterohemorrhagic Escherichia coli.
    Sule N; Pasupuleti S; Kohli N; Menon R; Dangott LJ; Manson MD; Jayaraman A
    Infect Immun; 2017 Oct; 85(10):. PubMed ID: 28717028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli.
    Ellermann M; Jimenez AG; Pifer R; Ruiz N; Sperandio V
    mBio; 2021 Jan; 12(1):. PubMed ID: 33468701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens.
    Sham HP; Yu EY; Gulen MF; Bhinder G; Stahl M; Chan JM; Brewster L; Morampudi V; Gibson DL; Hughes MR; McNagny KM; Li X; Vallance BA
    PLoS Pathog; 2013; 9(8):e1003539. PubMed ID: 23950714
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox, amino acid, and fatty acid metabolism intersect with bacterial virulence in the gut.
    Pifer R; Russell RM; Kumar A; Curtis MM; Sperandio V
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):E10712-E10719. PubMed ID: 30348782
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overview of the Effect of Citrobacter rodentium Infection on Host Metabolism and the Microbiota.
    Hopkins EGD; Frankel G
    Methods Mol Biol; 2021; 2291():399-418. PubMed ID: 33704766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of Citrobacter rodentium colonization: virulence, immune response and microbiota interactions.
    Caballero-Flores G; Pickard JM; Núñez G
    Curr Opin Microbiol; 2021 Oct; 63():142-149. PubMed ID: 34352594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Possible link between colonization of the gastrointestinal tract by Citrobacter rodentium in C57BL/6 mice and microbiota composition.
    Miki T; Haneda T; Okada N; Ito M
    Microbiol Immunol; 2024 Jun; 68(6):206-211. PubMed ID: 38644589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dopamine receptor D2 confers colonization resistance via gut microbial metabolites.
    Scott SA; Fu J; Chang PV
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993486
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium.
    Bailey MT; Dowd SE; Parry NM; Galley JD; Schauer DB; Lyte M
    Infect Immun; 2010 Apr; 78(4):1509-19. PubMed ID: 20145094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of virulence: the rise and fall of gastrointestinal pathogens.
    Kitamoto S; Nagao-Kitamoto H; Kuffa P; Kamada N
    J Gastroenterol; 2016 Mar; 51(3):195-205. PubMed ID: 26553054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Enteric Pathogen Subverts Colonization Resistance by Evading Competition for Amino Acids in the Gut.
    Caballero-Flores G; Pickard JM; Fukuda S; Inohara N; Núñez G
    Cell Host Microbe; 2020 Oct; 28(4):526-533.e5. PubMed ID: 32726577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection.
    Stecher B
    Microbiol Spectr; 2015 Jun; 3(3):. PubMed ID: 26185088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.