BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38502793)

  • 1. Asparagine-Glucose Amadori Compounds: Formation, Characterization, and Analysis in Dry Jujube Fruit.
    Xiao Q; Huang Q; Ho CT
    J Agric Food Chem; 2024 Apr; 72(13):7344-7353. PubMed ID: 38502793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amadori Reaction Products of Theanine and Glucose: Formation, Structure, and Analysis in Tea.
    Han Z; Jiang Z; Zhang H; Qin C; Rong X; Lai G; Wen M; Zhang L; Wan X; Ho CT
    J Agric Food Chem; 2022 Sep; 70(37):11727-11737. PubMed ID: 36084346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration effect of galacturonic acid on acrylamide generation: evidence in model reaction systems.
    Wang P; Sun G; Lu P; Zhu Y; Hu X; Chen F
    J Sci Food Agric; 2023 Jan; 103(1):361-369. PubMed ID: 35893577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Deamidation on the Formation of Pyrazines and Proline-Specific Compounds in Maillard Reaction of Asparagine and Proline with Glucose.
    Xiao Q; Huang Q; Ho CT
    J Agric Food Chem; 2023 May; 71(18):7090-7098. PubMed ID: 37126799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.
    Hwang DF; Hsieh TF; Lin SY
    J AOAC Int; 2013; 96(6):1362-4. PubMed ID: 24645515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of glutathione on acrylamide inhibition: Transformation products and mechanism.
    Zhu Y; Luo Y; Sun G; Wang P; Hu X; Chen F
    Food Chem; 2020 Oct; 326():126982. PubMed ID: 32413762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of citral on acrylamide formation in model systems.
    Zhu Y; Xu R; Luo Y; Sun G; Lin M; Hu X; Chen F
    Food Chem; 2022 Jun; 378():132097. PubMed ID: 35033705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adducts Derived from (-)-Epigallocatechin Gallate-Amadori Rearrangement Products in Aqueous Reaction Systems: Characterization, Formation, and Thermolysis.
    Yu J; Cui H; Zhang Q; Hayat K; Zhan H; Yu J; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2020 Sep; 68(39):10902-10911. PubMed ID: 32893622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Formation of
    Feng L; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Nov; 71(46):17874-17885. PubMed ID: 37939699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycine, Diglycine, and Triglycine Exhibit Different Reactivities in the Formation and Degradation of Amadori Compounds.
    Xia X; Zhai Y; Cui H; Zhang H; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Nov; 70(47):14907-14918. PubMed ID: 36378039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of pyrazines formation in methionine/glucose and corresponding Amadori rearrangement product model.
    Deng S; Cui H; Hayat K; Zhai Y; Zhang Q; Zhang X; Ho CT
    Food Chem; 2022 Jul; 382():132500. PubMed ID: 35245757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Selective Formation of Amadori Compounds from α/ε Mono- or Di-glycation of Lysine with Xylose.
    Zhang H; Cui H; Xia X; Zhang F; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2023 Apr; 71(13):5358-5371. PubMed ID: 36944085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence and Conversion Mechanism for Selective Preparation of a Xylose-Diglycine Amadori Compound and a Cross-linking Product in an Aqueous Maillard Reaction.
    Ma M; Cui H; Wang Z; Hayat K; Jia C; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Dec; 69(49):14915-14925. PubMed ID: 34856795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maillard Browning Inhibition by Ellagic Acid via Its Adduct Formation with the Amadori Rearrangement Product.
    Cui H; Wang Z; Ma M; Hayat K; Zhang Q; Xu Y; Zhang X; Ho CT
    J Agric Food Chem; 2021 Sep; 69(34):9924-9933. PubMed ID: 34427083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility Study of Amadori Rearrangement Products of Glycine, Diglycine, Triglycine, and Glucose as Potential Food Additives for Production, Stability, and Flavor Formation.
    Luo Y; Zhu S; Peng J; Cui H; Huang Q; Xu B; Ho CT
    J Agric Food Chem; 2024 Jan; 72(1):657-669. PubMed ID: 38109376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the C-Ring Structure of Flavonoids on the Yield of Adducts Formed by the Linkage of the Active Site at the A-Ring and Amadori Rearrangement Products during the Maillard Intermediate Preparation.
    Chen P; Cui H; Feng L; Yu J; Hayat K; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2022 Mar; 70(10):3280-3288. PubMed ID: 35245065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of N-(1-Deoxy-Α-D-Xylulos-1-Yl)-Glutamic Acid via Aqueous Maillard Reaction Coupled with Vacuum Dehydration and Its Flavor Formation Through Thermal Treatment of Baking Process.
    Xu M; Cui H; Sun F; Jia C; Zhang SL; Hussain S; Tahir MU; Zhang X; Hayat K
    J Food Sci; 2019 Aug; 84(8):2171-2180. PubMed ID: 31313307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of red jujube powder with high content of Amadori compounds and higher antioxidant activity by controlling the Maillard reaction.
    Yang C; Li S; Li C; Li J; Shi R; Cao J; Zhang L
    J Food Sci; 2024 Apr; 89(4):2218-2231. PubMed ID: 38372196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further insight into thermally and pH-induced generation of acrylamide from glucose/asparagine model systems.
    Perez Locas C; Yaylayan VA
    J Agric Food Chem; 2008 Aug; 56(15):6069-74. PubMed ID: 18624447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.