These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38502909)

  • 1. Water Impalement Resistance and Drag Reduction of the Superhydrophobic Surface with Hydrophilic Strips.
    Cao Y; Liu X; Zhang L; Wu Y; You C; Li H; Duan H; Huang J; Lv P
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16973-16982. PubMed ID: 38502909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of the effect of air layer on drag reduction in channel flow over a superhydrophobic surface.
    Nguyen HT; Lee SW; Ryu J; Kim M; Yoon J; Chang K
    Sci Rep; 2024 May; 14(1):12053. PubMed ID: 38802500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significant and stable drag reduction with air rings confined by alternated superhydrophobic and hydrophilic strips.
    Hu H; Wen J; Bao L; Jia L; Song D; Song B; Pan G; Scaraggi M; Dini D; Xue Q; Zhou F
    Sci Adv; 2017 Sep; 3(9):e1603288. PubMed ID: 28879234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drag Reduction Technology of Water Flow on Microstructured Surfaces: A Novel Perspective from Vortex Distributions and Densities.
    Liu C; Wang W; Hu X; Liu F
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Underwater Drag Reduction: A Butterfly Wing Scale-Inspired Superhydrophobic Surface.
    Chen Y; Hu Y; Zhang LW
    ACS Appl Mater Interfaces; 2024 May; 16(20):26954-26964. PubMed ID: 38713183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.
    Mayser MJ; Bohn HF; Reker M; Barthlott W
    Beilstein J Nanotechnol; 2014; 5():812-821. PubMed ID: 24991518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the Performance of a Surface with Coupled Wettability Difference and Convex-Stripe Array for Improved Air Layer Stability.
    Qiao S; Cai C; Pan C; Liu Y; Zhang Q
    Langmuir; 2024 Mar; 40(9):4940-4952. PubMed ID: 38378438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.
    Mayser MJ; Barthlott W
    Integr Comp Biol; 2014 Dec; 54(6):1001-7. PubMed ID: 24925548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward understanding whether superhydrophobic surfaces can really decrease fluidic friction drag.
    Su B; Li M; Lu Q
    Langmuir; 2010 Apr; 26(8):6048-52. PubMed ID: 20000363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Stable Drag Reduction of Controllable Laser-Patterned Superwetting Surfaces Containing Bioinspired Micro/Nanostructured Arrays.
    Rong W; Zhang H; Mao Z; Chen L; Liu X
    ACS Omega; 2022 Jan; 7(2):2049-2063. PubMed ID: 35071893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.
    Jetly A; Vakarelski IU; Thoroddsen ST
    Soft Matter; 2018 Feb; 14(9):1608-1613. PubMed ID: 29411833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Armored Superhydrophobic Surfaces with Excellent Drag Reduction in Complex Environmental Conditions.
    Wang Z; Liu X; Guo Y; Tong B; Zhang G; Liu K; Jiao Y
    Langmuir; 2024 Feb; ():. PubMed ID: 38335533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.
    Zhang J; Yao Z; Hao P
    Phys Rev E; 2016 Nov; 94(5-1):053117. PubMed ID: 27967180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic surfaces of the water bug Notonecta glauca: a model for friction reduction and air retention.
    Ditsche-Kuru P; Schneider ES; Melskotte JE; Brede M; Leder A; Barthlott W
    Beilstein J Nanotechnol; 2011; 2():137-44. PubMed ID: 21977425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single parameter can predict surfactant impairment of superhydrophobic drag reduction.
    Temprano-Coleto F; Smith SM; Peaudecerf FJ; Landel JR; Gibou F; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2211092120. PubMed ID: 36634141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction.
    Panchanathan D; Rajappan A; Varanasi KK; McKinley GH
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid-Infused Surfaces with Trapped Air (LISTA) for Drag Force Reduction.
    Hemeda AA; Tafreshi HV
    Langmuir; 2016 Mar; 32(12):2955-62. PubMed ID: 26977775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.