These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38502957)

  • 1. Gaze-contingent processing improves mobility, scene recognition and visual search in simulated head-steered prosthetic vision.
    de Ruyter van Steveninck J; Nipshagen M; van Gerven M; Güçlü U; Güçlüturk Y; van Wezel R
    J Neural Eng; 2024 Apr; 21(2):. PubMed ID: 38502957
    [No Abstract]   [Full Text] [Related]  

  • 2. Eye Movement Compensation and Spatial Updating in Visual Prosthetics: Mechanisms, Limitations and Future Directions.
    Paraskevoudi N; Pezaris JS
    Front Syst Neurosci; 2018; 12():73. PubMed ID: 30774585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driving simulation in the clinic: testing visual exploratory behavior in daily life activities in patients with visual field defects.
    Hamel J; Kraft A; Ohl S; De Beukelaer S; Audebert HJ; Brandt SA
    J Vis Exp; 2012 Sep; (67):e4427. PubMed ID: 23023223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full gaze contingency provides better reading performance than head steering alone in a simulation of prosthetic vision.
    Paraskevoudi N; Pezaris JS
    Sci Rep; 2021 May; 11(1):11121. PubMed ID: 34045485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Transient Loss of Vision on Head and Eye Movements during Visual Search in a Virtual Environment.
    David E; Beitner J; Võ ML
    Brain Sci; 2020 Nov; 10(11):. PubMed ID: 33198116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-world indoor mobility with simulated prosthetic vision: The benefits and feasibility of contour-based scene simplification at different phosphene resolutions.
    de Ruyter van Steveninck J; van Gestel T; Koenders P; van der Ham G; Vereecken F; Güçlü U; van Gerven M; Güçlütürk Y; van Wezel R
    J Vis; 2022 Feb; 22(2):1. PubMed ID: 35103758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The worse eye revisited: Evaluating the impact of asymmetric peripheral vision loss on everyday function.
    Chow-Wing-Bom H; Dekker TM; Jones PR
    Vision Res; 2020 Apr; 169():49-57. PubMed ID: 32179339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eye-head coordination for visual cognitive processing.
    Fang Y; Nakashima R; Matsumiya K; Kuriki I; Shioiri S
    PLoS One; 2015; 10(3):e0121035. PubMed ID: 25799510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye guidance during real-world scene search: The role color plays in central and peripheral vision.
    Nuthmann A; Malcolm GL
    J Vis; 2016; 16(2):3. PubMed ID: 26824640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What are the visuo-motor tendencies of omnidirectional scene free-viewing in virtual reality?
    David EJ; Lebranchu P; Perreira Da Silva M; Le Callet P
    J Vis; 2022 Mar; 22(4):12. PubMed ID: 35323868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of gaze control during prey capture in freely moving mice.
    Michaiel AM; Abe ET; Niell CM
    Elife; 2020 Jul; 9():. PubMed ID: 32706335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image processing strategies based on saliency segmentation for object recognition under simulated prosthetic vision.
    Li H; Su X; Wang J; Kan H; Han T; Zeng Y; Chai X
    Artif Intell Med; 2018 Jan; 84():64-78. PubMed ID: 29129481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effectiveness of Gaze-Contingent Control in Computer Games.
    Orlov PA; Apraksin N
    Perception; 2015; 44(8-9):1136-45. PubMed ID: 26562927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual wayfinding using simulated prosthetic vision in gaze-locked viewing.
    Wang L; Yang L; Dagnelie G
    Optom Vis Sci; 2008 Nov; 85(11):E1057-63. PubMed ID: 18981914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
    Lee KF; Chen YL; Yu CW; Chin KY; Wu CH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaze Compensation as a Technique for Improving Hand-Eye Coordination in Prosthetic Vision.
    Titchener SA; Shivdasani MN; Fallon JB; Petoe MA
    Transl Vis Sci Technol; 2018 Jan; 7(1):2. PubMed ID: 29321945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of handheld marker to calibrate a field-programmable gate array based eye tracker for artificial vision system.
    Caspi A; Roy A; Barry MP; Sadeghi R; Kartha A; Dagnelie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3323-3326. PubMed ID: 33018715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of visually guided tasks using simulated prosthetic vision and saliency-based cues.
    Parikh N; Itti L; Humayun M; Weiland J
    J Neural Eng; 2013 Apr; 10(2):026017. PubMed ID: 23449023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opportunities and Limitations of a Gaze-Contingent Display to Simulate Visual Field Loss in Driving Simulator Studies.
    Biebl B; Arcidiacono E; Kacianka S; Rieger JW; Bengler K
    Front Neuroergon; 2022; 3():916169. PubMed ID: 38235462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and application of real-time visual attention model for the exploration of 3D virtual environments.
    Hillaire S; Lécuyer A; Regia-Corte T; Cozot R; Royan J; Breton G
    IEEE Trans Vis Comput Graph; 2012 Mar; 18(3):356-68. PubMed ID: 21931178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.