These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38503002)
1. QSPR for the prediction of critical micelle concentration of different classes of surfactants using machine learning algorithms. Boukelkal N; Rahal S; Rebhi R; Hamadache M J Mol Graph Model; 2024 Jun; 129():108757. PubMed ID: 38503002 [TBL] [Abstract][Full Text] [Related]
2. On the prediction of critical micelle concentration for sugar-based non-ionic surfactants. Baghban A; Sasanipour J; Sarafbidabad M; Piri A; Razavi R Chem Phys Lipids; 2018 Aug; 214():46-57. PubMed ID: 29859141 [TBL] [Abstract][Full Text] [Related]
3. Prediction of critical micelle concentration of nonionic surfactants by a quantitative structure - property relationship. Mozrzymas A; Rózycka-Roszak B Comb Chem High Throughput Screen; 2010 Jan; 13(1):39-44. PubMed ID: 20201824 [TBL] [Abstract][Full Text] [Related]
4. A review on progress in QSPR studies for surfactants. Hu J; Zhang X; Wang Z Int J Mol Sci; 2010 Mar; 11(3):1020-1047. PubMed ID: 20479997 [TBL] [Abstract][Full Text] [Related]
5. QSPR study of critical micelle concentration of anionic surfactants using computational molecular descriptors. Katritzky AR; Pacureanu L; Dobchev D; Karelson M J Chem Inf Model; 2007; 47(3):782-93. PubMed ID: 17497845 [TBL] [Abstract][Full Text] [Related]
6. Prediction of critical micelle concentration for per- and polyfluoroalkyl substances. Creton B; Barraud E; Nieto-Draghi C SAR QSAR Environ Res; 2024 Apr; 35(4):309-324. PubMed ID: 38591134 [TBL] [Abstract][Full Text] [Related]
7. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses. Xu J; Wang L; Wang L; Shen X; Xu W J Comput Chem; 2011 Nov; 32(15):3241-52. PubMed ID: 21837634 [TBL] [Abstract][Full Text] [Related]
8. Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures. Ghasemi J; Ahmadi S Ann Chim; 2007; 97(1-2):69-83. PubMed ID: 17822265 [TBL] [Abstract][Full Text] [Related]
9. Integrating statistical and experimental protocols to model and design novel Gemini surfactants with promising critical micelle concentration and low environmental risk. Guo C; Zhou P; Shao J; Yang X; Shang Z Chemosphere; 2011 Sep; 84(11):1608-16. PubMed ID: 21683426 [TBL] [Abstract][Full Text] [Related]
10. 2D Quantitative structure-property relationship study of mycotoxins by multiple linear regression and support vector machine. Khosrokhavar R; Ghasemi JB; Shiri F Int J Mol Sci; 2010 Aug; 11(9):3052-68. PubMed ID: 20957079 [TBL] [Abstract][Full Text] [Related]
11. Development of QSPR-ANN models for the estimation of critical properties of pure hydrocarbons. Roubehie Fissa M; Lahiouel Y; Khaouane L; Hanini S J Mol Graph Model; 2023 Jun; 121():108450. PubMed ID: 36907016 [TBL] [Abstract][Full Text] [Related]
12. QSPR estimation models of normal boiling point and relative liquid density of pure hydrocarbons using MLR and MLP-ANN methods. Roubehie Fissa M; Lahiouel Y; Khaouane L; Hanini S J Mol Graph Model; 2019 Mar; 87():109-120. PubMed ID: 30537641 [TBL] [Abstract][Full Text] [Related]
13. On the Spacer Group Effect on Critical Micelle Concentration of Cationic Gemini Surfactants Using Molecular Connectivity Indices. Mozrzymas A Comb Chem High Throughput Screen; 2016; 19(6):481-8. PubMed ID: 27141990 [TBL] [Abstract][Full Text] [Related]
14. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution. Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258 [TBL] [Abstract][Full Text] [Related]
15. A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media. Ghasemi JB; Abdolmaleki A; Mandoumi N J Hazard Mater; 2009 Jan; 161(1):74-80. PubMed ID: 18456399 [TBL] [Abstract][Full Text] [Related]
16. Matrix trace operators: from spectral moments of molecular graphs and complex networks to perturbations in synthetic reactions, micelle nanoparticles, and drug ADME processes. Gonzalez-Diaz H; Arrasate S; Juan AG; Sotomayor N; Lete E; Speck-Planche A; Ruso JM; Luan F; Cordeiro MN Curr Drug Metab; 2014; 15(4):470-88. PubMed ID: 25204825 [TBL] [Abstract][Full Text] [Related]
17. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography. Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269 [TBL] [Abstract][Full Text] [Related]
18. Predicting the Temperature Dependence of Surfactant CMCs Using Graph Neural Networks. Brozos C; Rittig JG; Bhattacharya S; Akanny E; Kohlmann C; Mitsos A J Chem Theory Comput; 2024 Jul; 20(13):5695-5707. PubMed ID: 38920084 [TBL] [Abstract][Full Text] [Related]
19. Machine learning hybrid approach for the prediction of surface tension profiles of hydrocarbon surfactants in aqueous solution. Seddon D; Müller EA; Cabral JT J Colloid Interface Sci; 2022 Nov; 625():328-339. PubMed ID: 35717847 [TBL] [Abstract][Full Text] [Related]
20. Exploring QSPR models for predicting PUF-air partition coefficients of organic compounds with linear and nonlinear approaches. Zhu T; Gu L; Chen M; Sun F Chemosphere; 2021 Mar; 266():128962. PubMed ID: 33218721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]