These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38503182)

  • 1. Impact of storm events on disinfection byproduct precursors in a drinking water source in the Northeastern United States.
    Shakhawat MK; Gelda RK; Moore KE; Mukundan R; Lanzarini-Lopes M; McBeath ST; Guzman CD; Reckhow D
    Water Res; 2024 May; 255():121445. PubMed ID: 38503182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.
    Zhai H; He X; Zhang Y; Du T; Adeleye AS; Li Y
    Chemosphere; 2017 Aug; 181():224-231. PubMed ID: 28445816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of pre-oxidation of natural organic matter for the mitigation of disinfection byproducts: Electron donating capacity and UV absorbance as surrogate parameters.
    Rougé V; von Gunten U; Allard S
    Water Res; 2020 Dec; 187():116418. PubMed ID: 33011567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulated disinfection byproduct formation over long residence times.
    Kennedy A; Flint L; Aligata A; Hoffman C; Arias-Paić M
    Water Res; 2021 Jan; 188():116523. PubMed ID: 33125996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applicability of advanced oxidation processes in removing anthropogenically influenced chlorination disinfection byproduct precursors in a developing country.
    Tak S; Vellanki BP
    Ecotoxicol Environ Saf; 2019 Dec; 186():109768. PubMed ID: 31606645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between SUVA and DBP formation during chlorination and chloramination of NOM fractions from different sources.
    Hua G; Reckhow DA; Abusallout I
    Chemosphere; 2015 Jul; 130():82-9. PubMed ID: 25862949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling dichloroacetic acid formation from the reaction of monochloramine with natural organic matter.
    Duirk SE; Valentine RL
    Water Res; 2006 Aug; 40(14):2667-74. PubMed ID: 16824576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the chlorine demand and disinfection byproduct formation potential of surface waters via satellite remote sensing.
    Chen Y; Arnold WA; Griffin CG; Olmanson LG; Brezonik PL; Hozalski RM
    Water Res; 2019 Nov; 165():115001. PubMed ID: 31470281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing three Australian natural organic matter isolates to the Suwannee river standard: Reactivity, disinfection by-product yield, and removal by drinking water treatments.
    Watson K; Farré MJ; Knight N
    Sci Total Environ; 2019 Oct; 685():380-391. PubMed ID: 31176223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of disinfection byproduct formation potential in 13 source waters in China.
    Zhang J; Yu J; An W; Liu J; Wang Y; Chen Y; Tai J; Yang M
    J Environ Sci (China); 2011; 23(2):183-8. PubMed ID: 21516990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental disinfection by-product formation potential following rainfall events.
    Delpla I; Rodriguez MJ
    Water Res; 2016 Nov; 104():340-348. PubMed ID: 27570135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. THM and HAA formation from NOM in raw and treated surface waters.
    Golea DM; Upton A; Jarvis P; Moore G; Sutherland S; Parsons SA; Judd SJ
    Water Res; 2017 Apr; 112():226-235. PubMed ID: 28167408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disinfection byproduct formation from lignin precursors.
    Hua G; Kim J; Reckhow DA
    Water Res; 2014 Oct; 63():285-95. PubMed ID: 25016301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica.
    Kelly-Coto DE; Gamboa-Jiménez A; Mora-Campos D; Salas-Jiménez P; Silva-Narváez B; Jiménez-Antillón J; Pino-Gómez M; Romero-Esquivel LG
    Environ Sci Pollut Res Int; 2022 May; 29(22):32845-32854. PubMed ID: 35020142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of Organic Matter Surrogates to Predict Trihalomethane Formation in Drinking Water Sources.
    Pifer AD; Fairey JL
    Environ Eng Sci; 2014 Mar; 31(3):117-126. PubMed ID: 24669183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural organic matter removal from algal-rich water and disinfection by-products formation potential reduction by powdered activated carbon adsorption.
    Park KY; Yu YJ; Yun SJ; Kweon JH
    J Environ Manage; 2019 Apr; 235():310-318. PubMed ID: 30703645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of dissolved organic matter during four storm events in two forest streams: source, export, and implications for harmful disinfection byproduct formation.
    Yang L; Hur J; Lee S; Chang SW; Shin HS
    Environ Sci Pollut Res Int; 2015 Jun; 22(12):9173-83. PubMed ID: 25586618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of organics and formation of DBPs in the combined LED-UV and chlorine processes: Effects of water matrix and fluorescence analysis.
    Chen Y; Jafari I; Zhong Y; Chee MJ; Hu J
    Sci Total Environ; 2022 Nov; 846():157454. PubMed ID: 35868393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wildfires Alter Forest Watersheds and Threaten Drinking Water Quality.
    Hohner AK; Rhoades CC; Wilkerson P; Rosario-Ortiz FL
    Acc Chem Res; 2019 May; 52(5):1234-1244. PubMed ID: 31059225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water quality following extensive beetle-induced tree mortality: Interplay of aromatic carbon loading, disinfection byproducts, and hydrologic drivers.
    Brouillard BM; Dickenson ERV; Mikkelson KM; Sharp JO
    Sci Total Environ; 2016 Dec; 572():649-659. PubMed ID: 27515013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.