These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38503391)

  • 1. Unravelling the main mechanism responsible for nocturnal CO
    Kim M; Lopez-Canfin C; Lázaro R; Sánchez-Cañete EP; Weber B
    Sci Total Environ; 2024 May; 926():171751. PubMed ID: 38503391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water vapor adsorption by dry soils: A potential link between the water and carbon cycles.
    Lopez-Canfin C; Lázaro R; Sánchez-Cañete EP
    Sci Total Environ; 2022 Jun; 824():153746. PubMed ID: 35150687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil-atmosphere fluxes of CO
    Richardson AD; Kong GV; Taylor KM; Le Moine JM; Bowker MA; Barber JJ; Basler D; Carbone MS; Hayer M; Koch GW; Salvatore MR; Sonnemaker AW; Trilling DE
    Front Microbiol; 2022; 13():979825. PubMed ID: 36225383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mind the gap: non-biological processes contributing to soil CO2 efflux.
    Rey A
    Glob Chang Biol; 2015 May; 21(5):1752-61. PubMed ID: 25471988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-rainfall water inputs: A key water source for biocrust carbon fixation.
    Chamizo S; Rodríguez-Caballero E; Moro MJ; Cantón Y
    Sci Total Environ; 2021 Oct; 792():148299. PubMed ID: 34146814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Land-use changes alter CO2 flux patterns of a tall-grass Andropogon field and a savanna-woodland continuum in the Orinoco lowlands.
    San José J; Montes R; Grace J; Nikonova N
    Tree Physiol; 2008 Mar; 28(3):437-50. PubMed ID: 18171667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns and possible mechanisms of soil CO2 uptake in sandy soil.
    Fa KY; Zhang YQ; Wu B; Qin SG; Liu Z; She WW
    Sci Total Environ; 2016 Feb; 544():587-94. PubMed ID: 26674687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dryland irrigation increases accumulation rates of pedogenic carbonate and releases soil abiotic CO
    Ortiz AC; Jin L; Ogrinc N; Kaye J; Krajnc B; Ma L
    Sci Rep; 2022 Jan; 12(1):464. PubMed ID: 35013460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen fertilization raises CO
    Zamanian K; Zarebanadkouki M; Kuzyakov Y
    Glob Chang Biol; 2018 Jul; 24(7):2810-2817. PubMed ID: 29575284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in biocrust cover drive carbon cycle responses to climate change in drylands.
    Maestre FT; Escolar C; de Guevara ML; Quero JL; Lázaro R; Delgado-Baquerizo M; Ochoa V; Berdugo M; Gozalo B; Gallardo A
    Glob Chang Biol; 2013 Dec; 19(12):3835-47. PubMed ID: 23818331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest.
    Dalmagro HJ; Zanella de Arruda PH; Vourlitis GL; Lathuillière MJ; de S Nogueira J; Couto EG; Johnson MS
    Glob Chang Biol; 2019 Jun; 25(6):1967-1981. PubMed ID: 30854765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large influence of soil moisture on long-term terrestrial carbon uptake.
    Green JK; Seneviratne SI; Berg AM; Findell KL; Hagemann S; Lawrence DM; Gentine P
    Nature; 2019 Jan; 565(7740):476-479. PubMed ID: 30675043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of soil-atmosphere greenhouse gas exchange to changing plant litter inputs in terrestrial forest ecosystems.
    Cui J; Lam SK; Xu S; Lai DYF
    Sci Total Environ; 2022 Sep; 838(Pt 2):155995. PubMed ID: 35588851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced CO
    Xiao S; Wang C; Yu K; Liu G; Wu S; Wang J; Niu S; Zou J; Liu S
    Glob Chang Biol; 2023 Oct; 29(20):5829-5849. PubMed ID: 37485988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral transport of soil carbon and land-atmosphere CO2 flux induced by water erosion in China.
    Yue Y; Ni J; Ciais P; Piao S; Wang T; Huang M; Borthwick AG; Li T; Wang Y; Chappell A; Van Oost K
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6617-22. PubMed ID: 27247397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocrusts intensify water redistribution and improve water availability to dryland vegetation: insights from a spatially-explicit ecohydrological model.
    Baldauf S; Cantón Y; Tietjen B
    Front Microbiol; 2023; 14():1179291. PubMed ID: 37448577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands.
    Weber B; Wu D; Tamm A; Ruckteschler N; Rodríguez-Caballero E; Steinkamp J; Meusel H; Elbert W; Behrendt T; Sörgel M; Cheng Y; Crutzen PJ; Su H; Pöschl U
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15384-9. PubMed ID: 26621714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil phosphorous and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis.
    de Dios VR; Turnbull MH; Barbour MM; Ontedhu J; Ghannoum O; Tissue DT
    Tree Physiol; 2013 Nov; 33(11):1206-15. PubMed ID: 24271087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area.
    Decina SM; Hutyra LR; Gately CK; Getson JM; Reinmann AB; Short Gianotti AG; Templer PH
    Environ Pollut; 2016 May; 212():433-439. PubMed ID: 26914093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands.
    Gliksman D; Rey A; Seligmann R; Dumbur R; Sperling O; Navon Y; Haenel S; De Angelis P; Arnone JA; Grünzweig JM
    Glob Chang Biol; 2017 Apr; 23(4):1564-1574. PubMed ID: 27520482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.