BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 38503425)

  • 1. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation.
    Arar S; Haque MA; Bhatt N; Zhao Y; Kayed R
    ACS Chem Neurosci; 2024 Apr; 15(7):1366-1377. PubMed ID: 38503425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-Interplay between Osmolytes and mTOR in Alzheimer's Disease Pathogenesis.
    Mueed Z; Mehta D; Rai PK; Kamal MA; Poddar NK
    Curr Pharm Des; 2020; 26(37):4699-4711. PubMed ID: 32418522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase.
    Burg MB; Kwon ED; Peters EM
    Kidney Int Suppl; 1996 Dec; 57():S100-4. PubMed ID: 8941929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules.
    Tseng HC; Graves DJ
    Biochem Biophys Res Commun; 1998 Sep; 250(3):726-30. PubMed ID: 9784413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis for osmoregulation of organic osmolytes in renal medullary cells.
    Burg MB
    J Exp Zool; 1994 Feb; 268(2):171-5. PubMed ID: 8301253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of relative amounts of medullary organic osmolytes: effects of NaCl and urea differ.
    Nakanishi T; Uyama O; Nakahama H; Takamitsu Y; Sugita M
    Am J Physiol; 1993 Mar; 264(3 Pt 2):F472-9. PubMed ID: 8456960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation and aggregation of intrinsically disordered peptides.
    Levine ZA; Larini L; LaPointe NE; Feinstein SC; Shea JE
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2758-63. PubMed ID: 25691742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinctive solvation patterns make renal osmolytes diverse.
    Jackson-Atogi R; Sinha PK; Rösgen J
    Biophys J; 2013 Nov; 105(9):2166-74. PubMed ID: 24209862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spreading of Tau Protein Does Not Depend on Aggregation Propensity.
    Rodrigues S; Anglada-Huguet M; Hochgräfe K; Kaniyappan S; Wegmann S; Mandelkow EM
    J Mol Neurosci; 2023 Oct; 73(9-10):693-712. PubMed ID: 37606769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tau Interacting Proteins: Gaining Insight into the Roles of Tau in Health and Disease.
    Stancu IC; Ferraiolo M; Terwel D; Dewachter I
    Adv Exp Med Biol; 2019; 1184():145-166. PubMed ID: 32096036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compatible organic osmolytes in rat liver sinusoidal endothelial cells.
    Weik C; Warskulat U; Bode J; Peters-Regehr T; Häussinger D
    Hepatology; 1998 Feb; 27(2):569-75. PubMed ID: 9462659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Tau Proteoforms in Health and Disease.
    Waheed Z; Choudhary J; Jatala FH; Fatimah ; Noor A; Zerr I; Zafar S
    Mol Neurobiol; 2023 Sep; 60(9):5155-5166. PubMed ID: 37266762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting the ratio of different organic osmolytes in renal medullary cells.
    Moriyama T; Garcia-Perez A; Burg MB
    Am J Physiol; 1990 Nov; 259(5 Pt 2):F847-58. PubMed ID: 2240234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis.
    Yancey PH; Burg MB
    Am J Physiol; 1989 Oct; 257(4 Pt 2):F602-7. PubMed ID: 2801962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the ability of non-methylamine osmolytes present in kidney cells to counteract the deleterious effects of urea on structure, stability and function of proteins.
    Khan S; Bano Z; Singh LR; Hassan MI; Islam A; Ahmad F
    PLoS One; 2013; 8(9):e72533. PubMed ID: 24039776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compatible osmolytes modulate the response of porcine endothelial cells to hypertonicity and protect them from apoptosis.
    Alfieri RR; Cavazzoni A; Petronini PG; Bonelli MA; Caccamo AE; Borghetti AF; Wheeler KP
    J Physiol; 2002 Apr; 540(Pt 2):499-508. PubMed ID: 11956339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer's Disease and Other Tauopathies, and Possible Neuroprotective Strategies.
    Šimić G; Babić Leko M; Wray S; Harrington C; Delalle I; Jovanov-Milošević N; Bažadona D; Buée L; de Silva R; Di Giovanni G; Wischik C; Hof PR
    Biomolecules; 2016 Jan; 6(1):6. PubMed ID: 26751493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases.
    Metrick MA; Ferreira NDC; Saijo E; Kraus A; Newell K; Zanusso G; Vendruscolo M; Ghetti B; Caughey B
    Acta Neuropathol Commun; 2020 Feb; 8(1):22. PubMed ID: 32087764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different tau species lead to heterogeneous tau pathology propagation and misfolding.
    Dujardin S; Bégard S; Caillierez R; Lachaud C; Carrier S; Lieger S; Gonzalez JA; Deramecourt V; Déglon N; Maurage CA; Frosch MP; Hyman BT; Colin M; Buée L
    Acta Neuropathol Commun; 2018 Nov; 6(1):132. PubMed ID: 30497516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic osmolytes betaine, sorbitol and inositol are potent inhibitors of erythrocyte membrane ATPases.
    Moeckel GW; Shadman R; Fogel JM; Sadrzadeh SM
    Life Sci; 2002 Oct; 71(20):2413-24. PubMed ID: 12231402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.