These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38503833)

  • 1. Automated body organ segmentation, volumetry and population-averaged atlas for 3D motion-corrected T2-weighted fetal body MRI.
    Uus AU; Hall M; Grigorescu I; Avena Zampieri C; Egloff Collado A; Payette K; Matthew J; Kyriakopoulou V; Hajnal JV; Hutter J; Rutherford MA; Deprez M; Story L
    Sci Rep; 2024 Mar; 14(1):6637. PubMed ID: 38503833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D T2w fetal body MRI: automated organ volumetry, growth charts and population-averaged atlas.
    Uus AU; Hall M; Grigorescu I; Zampieri CA; Collado AE; Payette K; Matthew J; Kyriakopoulou V; Hajnal JV; Hutter J; Rutherford MA; Deprez M; Story L
    medRxiv; 2023 Sep; ():. PubMed ID: 37398121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21-36 weeks GA range.
    Uus AU; Grigorescu I; van Poppel MPM; Steinweg JK; Roberts TA; Rutherford MA; Hajnal JV; Lloyd DFA; Pushparajah K; Deprez M
    Med Image Anal; 2022 Aug; 80():102484. PubMed ID: 35649314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BOUNTI: Brain vOlumetry and aUtomated parcellatioN for 3D feTal MRI.
    Uus AU; Kyriakopoulou V; Makropoulos A; Fukami-Gartner A; Cromb D; Davidson A; Cordero-Grande L; Price AN; Grigorescu I; Williams LZJ; Robinson EC; Lloyd D; Pushparajah K; Story L; Hutter J; Counsell SJ; Edwards AD; Rutherford MA; Hajnal JV; Deprez M
    bioRxiv; 2023 Apr; ():. PubMed ID: 37131820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Craniofacial phenotyping with fetal MRI: a feasibility study of 3D visualisation, segmentation, surface-rendered and physical models.
    Matthew J; Uus A; De Souza L; Wright R; Fukami-Gartner A; Priego G; Saija C; Deprez M; Collado AE; Hutter J; Story L; Malamateniou C; Rhode K; Hajnal J; Rutherford MA
    BMC Med Imaging; 2024 Mar; 24(1):52. PubMed ID: 38429666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fetal brain volumetry through MRI volumetric reconstruction and segmentation.
    Gholipour A; Estroff JA; Barnewolt CE; Connolly SA; Warfield SK
    Int J Comput Assist Radiol Surg; 2011 May; 6(3):329-39. PubMed ID: 20625848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation.
    Uus AU; van Poppel MPM; Steinweg JK; Grigorescu I; Ramirez Gilliland P; Roberts TA; Egloff Collado A; Rutherford MA; Hajnal JV; Lloyd DFA; Pushparajah K; Deprez M
    J Cardiovasc Magn Reson; 2022 Dec; 24(1):71. PubMed ID: 36517850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated fetal brain segmentation from 2D MRI slices for motion correction.
    Keraudren K; Kuklisova-Murgasova M; Kyriakopoulou V; Malamateniou C; Rutherford MA; Kainz B; Hajnal JV; Rueckert D
    Neuroimage; 2014 Nov; 101():633-43. PubMed ID: 25058899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion corrected fetal body magnetic resonance imaging provides reliable 3D lung volumes in normal and abnormal fetuses.
    Davidson J; Uus A; Egloff A; van Poppel M; Matthew J; Steinweg J; Deprez M; Aertsen M; Deprest J; Rutherford M
    Prenat Diagn; 2022 May; 42(5):628-635. PubMed ID: 35262959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated template-based brain localization and extraction for fetal brain MRI reconstruction.
    Tourbier S; Velasco-Annis C; Taimouri V; Hagmann P; Meuli R; Warfield SK; Bach Cuadra M; Gholipour A
    Neuroimage; 2017 Jul; 155():460-472. PubMed ID: 28408290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study.
    Lloyd DFA; Pushparajah K; Simpson JM; van Amerom JFP; van Poppel MPM; Schulz A; Kainz B; Deprez M; Lohezic M; Allsop J; Mathur S; Bellsham-Revell H; Vigneswaran T; Charakida M; Miller O; Zidere V; Sharland G; Rutherford M; Hajnal JV; Razavi R
    Lancet; 2019 Apr; 393(10181):1619-1627. PubMed ID: 30910324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is fetal magnetic resonance imaging volumetry of eventrated organs in gastroschisis predictive for surgical treatment?
    Sezen P; Prayer F; Prayer D; Kasprian G; Metzelder M
    Pediatr Radiol; 2021 Sep; 51(10):1818-1825. PubMed ID: 33950269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI.
    Ebner M; Wang G; Li W; Aertsen M; Patel PA; Aughwane R; Melbourne A; Doel T; Dymarkowski S; De Coppi P; David AL; Deprest J; Ourselin S; Vercauteren T
    Neuroimage; 2020 Feb; 206():116324. PubMed ID: 31704293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An automated pipeline for quantitative T2* fetal body MRI and segmentation at low field.
    Payette K; Uus A; Verdera JA; Zampieri CA; Hall M; Story L; Deprez M; Rutherford MA; Hajnal JV; Ourselin S; Tomi-Tricot R; Hutter J
    ArXiv; 2023 Aug; ():. PubMed ID: 37608939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformable Slice-to-Volume Registration for Motion Correction of Fetal Body and Placenta MRI.
    Uus A; Zhang T; Jackson LH; Roberts TA; Rutherford MA; Hajnal JV; Deprez M
    IEEE Trans Med Imaging; 2020 Sep; 39(9):2750-2759. PubMed ID: 32086200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method.
    Wu S; Weinstein SP; Conant EF; Kontos D
    Med Phys; 2013 Dec; 40(12):122302. PubMed ID: 24320533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated 3D Fetal Brain Segmentation Using an Optimized Deep Learning Approach.
    Zhao L; Asis-Cruz JD; Feng X; Wu Y; Kapse K; Largent A; Quistorff J; Lopez C; Wu D; Qing K; Meyer C; Limperopoulos C
    AJNR Am J Neuroradiol; 2022 Mar; 43(3):448-454. PubMed ID: 35177547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures.
    Lim IA; Faria AV; Li X; Hsu JT; Airan RD; Mori S; van Zijl PC
    Neuroimage; 2013 Nov; 82():449-69. PubMed ID: 23769915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis.
    Marami B; Mohseni Salehi SS; Afacan O; Scherrer B; Rollins CK; Yang E; Estroff JA; Warfield SK; Gholipour A
    Neuroimage; 2017 Aug; 156():475-488. PubMed ID: 28433624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.