These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38503945)
1. The Effect of Lens Shape, Zonular Insertion and Finite Element Model on Simulated Shape Change of the Eye Lens. Ye L; Wang K; Grasa J; Pierscionek BK Ann Biomed Eng; 2024 Aug; 52(8):1982-1990. PubMed ID: 38503945 [TBL] [Abstract][Full Text] [Related]
2. Estimating the external force acting on the human eye lens during accommodation by finite element modelling. Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM Vision Res; 2006 Oct; 46(21):3642-50. PubMed ID: 16750240 [TBL] [Abstract][Full Text] [Related]
3. The importance of parameter choice in modelling dynamics of the eye lens. Wang K; Venetsanos DT; Wang J; Augousti AT; Pierscionek BK Sci Rep; 2017 Nov; 7(1):16688. PubMed ID: 29192148 [TBL] [Abstract][Full Text] [Related]
4. Contributions of shape and stiffness to accommodative loss in the ageing human lens: a finite element model assessment. Wang K; Hoshino M; Uesugi K; Yagi N; Pierscionek BK J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):B116-B122. PubMed ID: 31044989 [TBL] [Abstract][Full Text] [Related]
5. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study. Pour HM; Kanapathipillai S; Zarrabi K; Manns F; Ho A Clin Exp Optom; 2015 Mar; 98(2):126-37. PubMed ID: 25727940 [TBL] [Abstract][Full Text] [Related]
6. Insights into the age-related decline in the amplitude of accommodation of the human lens using a non-linear finite-element model. Schachar RA; Abolmaali A; Le T Br J Ophthalmol; 2006 Oct; 90(10):1304-9. PubMed ID: 16854823 [TBL] [Abstract][Full Text] [Related]
7. The Effect of the Zonular Fiber Angle of Insertion on Accommodation. Feng L; Pierscionek B; Weeber H; Canovas Vidal C; Rozema JJ Vision (Basel); 2024 Jul; 8(3):. PubMed ID: 39189183 [No Abstract] [Full Text] [Related]
8. Change in the accommodative force on the lens of the human eye with age. Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM Vision Res; 2008 Jan; 48(1):119-26. PubMed ID: 18054980 [TBL] [Abstract][Full Text] [Related]
9. Gradient moduli lens models: how material properties and application of forces can affect deformation and distributions of stress. Wang K; Venetsanos D; Wang J; Pierscionek BK Sci Rep; 2016 Aug; 6():31171. PubMed ID: 27507665 [TBL] [Abstract][Full Text] [Related]
10. The major influence of anterior and equatorial zonular fibres on the far-to-near accommodation revealed by a 3D pre-stressed model of the anterior eye. Pu Y; Liu Z; Ye L; Xia Y; Chen X; Wang K; Pierscionek BK Comput Methods Programs Biomed; 2023 Dec; 242():107815. PubMed ID: 37729794 [TBL] [Abstract][Full Text] [Related]
11. The relationship between accommodative amplitude and the ratio of central lens thickness to its equatorial diameter in vertebrate eyes. Schachar RA; Pierscionek BK; Abolmaali A; Le T Br J Ophthalmol; 2007 Jun; 91(6):812-7. PubMed ID: 17050574 [TBL] [Abstract][Full Text] [Related]
12. A study for accommodating the human crystalline lens by finite element simulation. Liu Z; Wang B; Xu X; Wang C Comput Med Imaging Graph; 2006; 30(6-7):371-6. PubMed ID: 17095189 [TBL] [Abstract][Full Text] [Related]
13. A validated finite element model to reproduce Helmholtz's theory of accommodation: a powerful tool to investigate presbyopia. Cabeza-Gil I; Grasa J; Calvo B Ophthalmic Physiol Opt; 2021 Nov; 41(6):1241-1253. PubMed ID: 34463367 [TBL] [Abstract][Full Text] [Related]
14. Effect of anterior zonule transection on the change in lens diameter and power in cynomolgus monkeys during simulated accommodation. Nankivil D; Manns F; Arrieta-Quintero E; Ziebarth N; Borja D; Amelinckx A; Bernal A; Ho A; Parel JM Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):4017-21. PubMed ID: 19324840 [TBL] [Abstract][Full Text] [Related]
15. A numerical investigation of changes in lens shape during accommodation. Cabeza-Gil I; Grasa J; Calvo B Sci Rep; 2021 May; 11(1):9639. PubMed ID: 33953252 [TBL] [Abstract][Full Text] [Related]
16. Analysis of human crystalline lens accommodation. Chien CH; Huang T; Schachar RA J Biomech; 2006; 39(4):672-80. PubMed ID: 16023655 [TBL] [Abstract][Full Text] [Related]
17. Equivalent refractive index of the human lens upon accommodative response. Hermans EA; Dubbelman M; Van der Heijde R; Heethaar RM Optom Vis Sci; 2008 Dec; 85(12):1179-84. PubMed ID: 19050472 [TBL] [Abstract][Full Text] [Related]
18. [Finite Element Modelling of the Eye for the Investigation of Accommodation]. Martin H; Stachs O; Guthoff R; Grabow N Klin Monbl Augenheilkd; 2016 Dec; 233(12):1357-1361. PubMed ID: 27706535 [No Abstract] [Full Text] [Related]
19. Internal deformation of the human crystalline lens during accommodation. Weeber HA; van der Heijde RG Acta Ophthalmol; 2008 Sep; 86(6):642-7. PubMed ID: 18752516 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the accommodation theories of Coleman and of Helmholtz by finite element simulations. Martin H; Guthoff R; Terwee T; Schmitz KP Vision Res; 2005 Oct; 45(22):2910-5. PubMed ID: 16102799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]