BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38503957)

  • 1. Implications of Russia-Ukraine war on land surface temperature and air quality: long-term and short-term analysis.
    Gupta P; Shukla DP
    Environ Sci Pollut Res Int; 2024 Mar; ():. PubMed ID: 38503957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in air pollution, land surface temperature, and urban heat islands during the COVID-19 lockdown in three Chinese urban agglomerations.
    Feng Z; Wang X; Yuan J; Zhang Y; Yu M
    Sci Total Environ; 2023 Sep; 892():164496. PubMed ID: 37257592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the dynamics of urban surface temperatures and air pollution related to COVID-19 in a densely populated City environment in East Java.
    Purwanto P; Astuti IS; Rohman F; Utomo KSB; Aldianto YE
    Ecol Inform; 2022 Nov; 71():101809. PubMed ID: 36097581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The environmental health impacts of Russia's war on Ukraine.
    Hryhorczuk D; Levy BS; Prodanchuk M; Kravchuk O; Bubalo N; Hryhorczuk A; Erickson TB
    J Occup Med Toxicol; 2024 Jan; 19(1):1. PubMed ID: 38183124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vegetation-induced asymmetric diurnal land surface temperatures changes across global climate zones.
    Yu L; Liu Y; Li X; Yan F; Lyne V; Liu T
    Sci Total Environ; 2023 Oct; 896():165255. PubMed ID: 37400032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abrupt exacerbation in air quality over Europe after the outbreak of Russia-Ukraine war.
    Meng X; Lu B; Liu C; Zhang Z; Chen J; Herrmann H; Li X
    Environ Int; 2023 Aug; 178():108120. PubMed ID: 37527587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental damages due to war in Ukraine: A perspective.
    Rawtani D; Gupta G; Khatri N; Rao PK; Hussain CM
    Sci Total Environ; 2022 Dec; 850():157932. PubMed ID: 35952889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. War drives forest fire risks and highlights the need for more ecologically-sound forest management in post-war Ukraine.
    Matsala M; Odruzhenko A; Hinchuk T; Myroniuk V; Drobyshev I; Sydorenko S; Zibtsev S; Milakovsky B; Schepaschenko D; Kraxner F; Bilous A
    Sci Rep; 2024 Feb; 14(1):4131. PubMed ID: 38374396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attribution of local land surface temperature variations response to irrigation over the North China Plain.
    Zhang Z; Lin A; Zhao L; Zhao B
    Sci Total Environ; 2022 Jun; 826():154104. PubMed ID: 35219684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal change and its spatial variety on land surface temperature and land use changes in the Red River Delta, Vietnam, using MODIS time-series imagery.
    Van Nguyen O; Kawamura K; Trong DP; Gong Z; Suwandana E
    Environ Monit Assess; 2015 Jul; 187(7):464. PubMed ID: 26113204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and Temporal Variation of Land Surface Temperature and Its Spatially Heterogeneous Response in the Urban Agglomeration on the Northern Slopes of the Tianshan Mountains, Northwest China.
    Zhang X; Kasimu A; Liang H; Wei B; Aizizi Y
    Int J Environ Res Public Health; 2022 Oct; 19(20):. PubMed ID: 36293649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe deterioration in food-energy-ecosystem nexus due to ongoing Russia-Ukraine war: A critical review.
    Chowdhury PR; Medhi H; Bhattacharyya KG; Hussain CM
    Sci Total Environ; 2023 Dec; 902():166131. PubMed ID: 37562630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Data Fusion Modeling Framework for Retrieval of Land Surface Temperature from Landsat-8 and Modis Data.
    Zhao G; Zhang Y; Tan J; Li C; Ren Y
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32759664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine.
    Hao B; Ma M; Li S; Li Q; Hao D; Huang J; Ge Z; Yang H; Han X
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31067808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the spatiotemporal coupling relationships between land use/land cover compositions or patterns and the surface urban heat island effect.
    Ma X; Peng S
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39723-39742. PubMed ID: 35107726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellites capture socioeconomic disruptions during the 2022 full-scale war in Ukraine.
    Ialongo I; Bun R; Hakkarainen J; Virta H; Oda T
    Sci Rep; 2023 Sep; 13(1):14954. PubMed ID: 37737292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites.
    Chang Y; Xiao J; Li X; Frolking S; Zhou D; Schneider A; Weng Q; Yu P; Wang X; Li X; Liu S; Wu Y
    Sci Total Environ; 2021 Apr; 763():144224. PubMed ID: 33383505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep peat warming increases surface methane and carbon dioxide emissions in a black spruce-dominated ombrotrophic bog.
    Gill AL; Giasson MA; Yu R; Finzi AC
    Glob Chang Biol; 2017 Dec; 23(12):5398-5411. PubMed ID: 28675635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating contributions of urbanization and global climate change to urban land surface temperature change: a case study in Lagos, Nigeria.
    Guo L; Di L; Zhang C; Lin L; Chen F; Molla A
    Sci Rep; 2022 Aug; 12(1):14168. PubMed ID: 35986051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistency of spatiotemporal variability of MODIS and ERA5-Land surface warming trends over complex topography.
    Yilmaz M
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):94414-94435. PubMed ID: 37531063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.