BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 38504096)

  • 1. Identification of expression profiles and prognostic value of RFCs in colorectal cancer.
    Misbah M; Kumar M; Najmi AK; Akhtar M
    Sci Rep; 2024 Mar; 14(1):6607. PubMed ID: 38504096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative analysis of expression, prognostic significance and immune infiltration of RFC family genes in human sarcoma.
    Wu G; Zhou J; Zhu X; Tang X; Liu J; Zhou Q; Chen Z; Liu T; Wang W; Xiao X; Wu T
    Aging (Albany NY); 2022 Apr; 14(8):3705-3719. PubMed ID: 35483337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RFC5, regulated by circ_0038985/miR-3614-5p, functions as an oncogene in the progression of colorectal cancer.
    Yao H; Zhou X; Zhou A; Chen J; Chen G; Shi X; Shi B; Tai Q; Mi X; Zhou G; Wang S; Sun J; Yang X; Yang Y; Cao H; Zhou D; Sun L; Yao Y; He S
    Mol Carcinog; 2023 Jun; 62(6):771-785. PubMed ID: 36988339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rfc5, in cooperation with rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae.
    Naiki T; Shimomura T; Kondo T; Matsumoto K; Sugimoto K
    Mol Cell Biol; 2000 Aug; 20(16):5888-96. PubMed ID: 10913172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RFC2, a direct target of miR-744, modulates the cell cycle and promotes the proliferation of CRC cells.
    Hu T; Shen H; Li J; Yang P; Gu Q; Fu Z
    J Cell Physiol; 2020 Nov; 235(11):8319-8333. PubMed ID: 32239691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the five replication factor C genes of Saccharomyces cerevisiae.
    Cullmann G; Fien K; Kobayashi R; Stillman B
    Mol Cell Biol; 1995 Sep; 15(9):4661-71. PubMed ID: 7651383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allele-specific interactions between the yeast RFC1 and RFC5 genes suggest a basis for RFC subunit-subunit interactions.
    Beckwith W; McAlear MA
    Mol Gen Genet; 2000 Nov; 264(4):378-91. PubMed ID: 11129041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading.
    Schmidt SL; Gomes XV; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34784-91. PubMed ID: 11432854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway.
    Naiki T; Kondo T; Nakada D; Matsumoto K; Sugimoto K
    Mol Cell Biol; 2001 Sep; 21(17):5838-45. PubMed ID: 11486023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel Rad24 checkpoint protein complex closely related to replication factor C.
    Green CM; Erdjument-Bromage H; Tempst P; Lowndes NF
    Curr Biol; 2000 Jan; 10(1):39-42. PubMed ID: 10660302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading.
    Johnson A; Yao NY; Bowman GD; Kuriyan J; O'Donnell M
    J Biol Chem; 2006 Nov; 281(46):35531-43. PubMed ID: 16980295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The PCNA-RFC families of DNA clamps and clamp loaders.
    Majka J; Burgers PM
    Prog Nucleic Acid Res Mol Biol; 2004; 78():227-60. PubMed ID: 15210332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP utilization by yeast replication factor C. IV. RFC ATP-binding mutants show defects in DNA replication, DNA repair, and checkpoint regulation.
    Schmidt SL; Pautz AL; Burgers PM
    J Biol Chem; 2001 Sep; 276(37):34792-800. PubMed ID: 11549622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process.
    Venclovas C; Colvin ME; Thelen MP
    Protein Sci; 2002 Oct; 11(10):2403-16. PubMed ID: 12237462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Novel miRNAs, Targeting Genes, Signaling Pathway, and the Small Molecule for Overcoming Oxaliplatin Resistance of Metastatic Colorectal Cancer.
    Misbah M; Kumar M; Lee KH; Shen SC
    Biomed Res Int; 2022; 2022():3825760. PubMed ID: 36193307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational and expressional analysis of RFC3, a clamp loader in DNA replication, in gastric and colorectal cancers.
    Kim YR; Song SY; Kim SS; An CH; Lee SH; Yoo NJ
    Hum Pathol; 2010 Oct; 41(10):1431-7. PubMed ID: 20573375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways.
    Shimomura T; Ando S; Matsumoto K; Sugimoto K
    Mol Cell Biol; 1998 Sep; 18(9):5485-91. PubMed ID: 9710632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of Prognostic Biomarkers among Replication Factor C Family in the Hepatocellular Carcinoma.
    Deng J; Zhong F; Gu W; Qiu F
    Evol Bioinform Online; 2021; 17():1176934321994109. PubMed ID: 33628006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifaceted regulation and functions of replication factor C family in human cancers.
    Li Y; Gan S; Ren L; Yuan L; Liu J; Wang W; Wang X; Zhang Y; Jiang J; Zhang F; Qi X
    Am J Cancer Res; 2018; 8(8):1343-1355. PubMed ID: 30210909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivating pentapeptide insertions in the fission yeast replication factor C subunit Rfc2 cluster near the ATP-binding site and arginine finger motif.
    Gray FC; Whitehead KA; MacNeill SA
    FEBS J; 2009 Sep; 276(17):4803-13. PubMed ID: 19664060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.