BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38504412)

  • 1. Phototrophic Fe(II) oxidation by Rhodopseudomonas palustris TIE-1 in organic and Fe(II)-rich conditions.
    Nikeleit V; Maisch M; Byrne JM; Harwood C; Kappler A; Bryce C
    Environ Microbiol; 2024 Mar; 26(3):e16608. PubMed ID: 38504412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phototrophic Lactate Utilization by
    Govindaraju A; McKinlay JB; LaSarre B
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1.
    Jiao Y; Kappler A; Croal LR; Newman DK
    Appl Environ Microbiol; 2005 Aug; 71(8):4487-96. PubMed ID: 16085840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation.
    Bryce C; Franz-Wachtel M; Nalpas NC; Miot J; Benzerara K; Byrne JM; Kleindienst S; Macek B; Kappler A
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29915106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
    Haas NW; Jain A; Hying Z; Arif SJ; Niehaus TD; Gralnick JA; Fixen KR
    Appl Environ Microbiol; 2022 Aug; 88(15):e0097422. PubMed ID: 35862670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1.
    Jiao Y; Newman DK
    J Bacteriol; 2007 Mar; 189(5):1765-73. PubMed ID: 17189359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Fermentation of pyruvate by 7 species of phototrophic purple bacteria].
    Gürgün V; Kirchner G; Pfennig N
    Z Allg Mikrobiol; 1976; 16(8):573-86. PubMed ID: 12621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of thiosulfate on the photosynthetic growth of Rhodopseudomonas palustris.
    Rolls JP; Lindstrom ES
    J Bacteriol; 1967 Oct; 94(4):860-9. PubMed ID: 6051358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of Fe(II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium Rhodopseudomonas palustris strain TIE-1.
    Eickhoff M; Birgel D; Talbot HM; Peckmann J; Kappler A
    Geobiology; 2013 May; 11(3):268-78. PubMed ID: 23480293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
    Ehrenreich A; Widdel F
    Appl Environ Microbiol; 1994 Dec; 60(12):4517-26. PubMed ID: 7811087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Redundancy in Iron and Manganese Transport in the Metabolically Versatile Bacterium Rhodopseudomonas palustris TIE-1.
    Singh R; Ranaivoarisoa TO; Gupta D; Bai W; Bose A
    Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32503905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phototrophic Fe(II) oxidation benefits from light/dark cycles.
    Nikeleit V; Roth L; Maisch M; Kappler A; Bryce C
    Environ Microbiol Rep; 2024 Apr; 16(2):e13239. PubMed ID: 38490970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into Nitrate-Reducing Fe(II) Oxidation Mechanisms through Analysis of Cell-Mineral Associations, Cell Encrustation, and Mineralogy in the Chemolithoautotrophic Enrichment Culture KS.
    Nordhoff M; Tominski C; Halama M; Byrne JM; Obst M; Kleindienst S; Behrens S; Kappler A
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean.
    Zhou A; Templeton AS; Johnson JE
    Geobiology; 2024; 22(1):e12587. PubMed ID: 38385601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria.
    McKinlay JB; Harwood CS
    mBio; 2011; 2(2):. PubMed ID: 21427286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
    Peng C; Bryce C; Sundman A; Kappler A
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris.
    Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A
    Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron.
    Kopf SH; Newman DK
    Geobiology; 2012 May; 10(3):216-22. PubMed ID: 22212713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria.
    Byrne JM; Klueglein N; Pearce C; Rosso KM; Appel E; Kappler A
    Science; 2015 Mar; 347(6229):1473-6. PubMed ID: 25814583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates.
    Chen CY; Lu WB; Liu CH; Chang JS
    Bioresour Technol; 2008 Jun; 99(9):3609-16. PubMed ID: 17826982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.