These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Redox proteomics: from bench to bedside. Ckless K Adv Exp Med Biol; 2014; 806():301-17. PubMed ID: 24952188 [TBL] [Abstract][Full Text] [Related]
3. Protein redox modification as a cellular defense mechanism against tissue ischemic injury. Yan LJ Oxid Med Cell Longev; 2014; 2014():343154. PubMed ID: 24883175 [TBL] [Abstract][Full Text] [Related]
4. Molecular responses of legumes to abiotic stress: post-translational modifications of proteins and redox signaling. Matamoros MA; Becana M J Exp Bot; 2021 Aug; 72(16):5876-5892. PubMed ID: 33453107 [TBL] [Abstract][Full Text] [Related]
6. Mass spectrometry and redox proteomics: applications in disease. Butterfield DA; Gu L; Di Domenico F; Robinson RA Mass Spectrom Rev; 2014; 33(4):277-301. PubMed ID: 24930952 [TBL] [Abstract][Full Text] [Related]
7. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation. Boronat S; García-Santamarina S; Hidalgo E Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062 [TBL] [Abstract][Full Text] [Related]
8. A direct way of redox sensing. Benoit R; Auer M RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology. Wani R; Murray BW Methods Mol Biol; 2017; 1558():191-212. PubMed ID: 28150239 [TBL] [Abstract][Full Text] [Related]
10. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Lushchak OV; Piroddi M; Galli F; Lushchak VI Redox Rep; 2014 Jan; 19(1):8-15. PubMed ID: 24266943 [TBL] [Abstract][Full Text] [Related]
12. Posttranslational modification of cysteine in redox signaling and oxidative stress: Focus on s-glutathionylation. Mieyal JJ; Chock PB Antioxid Redox Signal; 2012 Mar; 16(6):471-5. PubMed ID: 22136616 [TBL] [Abstract][Full Text] [Related]
13. Introduction to the thematic minireview series on redox-active protein modifications and signaling. Banerjee R J Biol Chem; 2013 Sep; 288(37):26463. PubMed ID: 23861402 [TBL] [Abstract][Full Text] [Related]
14. Post-Translational Modifications to Cysteine Residues in Plant Proteins and Their Impact on the Regulation of Metabolism and Signal Transduction. Boutin C; Clément C; Rivoal J Int J Mol Sci; 2024 Sep; 25(18):. PubMed ID: 39337338 [TBL] [Abstract][Full Text] [Related]
15. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. Duan J; Gaffrey MJ; Qian WJ Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434 [TBL] [Abstract][Full Text] [Related]
19. H2O2/nitrite-induced post-translational modifications of human hemoglobin determined by mass spectrometry: redox regulation of tyrosine nitration and 3-nitrotyrosine reduction by antioxidants. Chen HJ; Chang CM; Lin WP; Cheng DL; Leong MI Chembiochem; 2008 Jan; 9(2):312-23. PubMed ID: 18161731 [TBL] [Abstract][Full Text] [Related]
20. Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review. Majewska AM; Mostek A Electrophoresis; 2021 Jul; 42(12-13):1378-1387. PubMed ID: 33783010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]