These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38504749)

  • 1. Urban delineation through a prism of intraday commute patterns.
    Bogomolov Y; Belyi A; Sobolevsky S
    Front Big Data; 2024; 7():1356116. PubMed ID: 38504749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Systematic Review of Mobile Phone Data in Crime Applications: A Coherent Taxonomy Based on Data Types and Analysis Perspectives, Challenges, and Future Research Directions.
    Okmi M; Por LY; Ang TF; Al-Hussein W; Ku CS
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring universal patterns in human home-work commuting from mobile phone data.
    Kung KS; Greco K; Sobolevsky S; Ratti C
    PLoS One; 2014; 9(6):e96180. PubMed ID: 24933264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commute Booster: A Mobile Application for First/Last Mile and Middle Mile Navigation Support for People With Blindness and Low Vision.
    Feng J; Beheshti M; Philipson M; Ramsaywack Y; Porfiri M; Rizzo JR
    IEEE J Transl Eng Health Med; 2023; 11():523-535. PubMed ID: 38059065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Scale on Extracting Individual Mobility Patterns from Location-Based Social Media.
    Bin Asad KM; Yuan Y
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The TimeGeo modeling framework for urban motility without travel surveys.
    Jiang S; Yang Y; Gupta S; Veneziano D; Athavale S; González MC
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):E5370-8. PubMed ID: 27573826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythm of the streets: a street classification framework based on street activity patterns.
    Su T; Sun M; Fan Z; Noyman A; Pentland A; Moro E
    EPJ Data Sci; 2022; 11(1):43. PubMed ID: 35915632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Road criticality assessment to improve commutes during floods.
    Chen H; Zhang H; Jang SG; Liu X; Xing L; Wu Z; Zhang L; Liu Y; Chen C
    J Environ Manage; 2024 Jan; 349():119592. PubMed ID: 37992658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A city of cities: Measuring how 15-minutes urban accessibility shapes human mobility in Barcelona.
    Graells-Garrido E; Serra-Burriel F; Rowe F; Cucchietti FM; Reyes P
    PLoS One; 2021; 16(5):e0250080. PubMed ID: 33951051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustered embedding using deep learning to analyze urban mobility based on complex transportation data.
    Cho SB; Kim JY
    PLoS One; 2021; 16(4):e0249318. PubMed ID: 33878114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring spatial accessibility and supply-demand deviation of urban green space: A mobile phone signaling data perspective.
    Chen J; Wang C; Zhang Y; Li D
    Front Public Health; 2022; 10():1029551. PubMed ID: 36339177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain.
    Goel R; Garcia LMT; Goodman A; Johnson R; Aldred R; Murugesan M; Brage S; Bhalla K; Woodcock J
    PLoS One; 2018; 13(5):e0196521. PubMed ID: 29718953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring Urban Vibrancy of Residential Communities Using Big Crowdsourced Geotagged Data.
    Wang P; Liu K; Wang D; Fu Y
    Front Big Data; 2021; 4():690970. PubMed ID: 34179770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What can urban mobility data reveal about the spatial distribution of infection in a single city?
    Moss R; Naghizade E; Tomko M; Geard N
    BMC Public Health; 2019 May; 19(1):656. PubMed ID: 31142311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AllAboard: Visual Exploration of Cellphone Mobility Data to Optimise Public Transport.
    Di Lorenzo G; Sbodio M; Calabrese F; Berlingerio M; Pinelli F; Nair R
    IEEE Trans Vis Comput Graph; 2016 Feb; 22(2):1036-50. PubMed ID: 26731450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling the spatial directionality of urban mobility.
    Zhao P; Wang H; Liu Q; Yan XY; Li J
    Nat Commun; 2024 May; 15(1):4507. PubMed ID: 38802395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in mode of travel to work: a natural experimental study of new transport infrastructure.
    Heinen E; Panter J; Mackett R; Ogilvie D
    Int J Behav Nutr Phys Act; 2015 Jun; 12():81. PubMed ID: 26091806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Relationships between Multilevel Built Environments and Commute Durations in Dual-Earner Households: Does Gender Matter?
    Wang X; Wang W; Yin C
    Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability in Regularity: Mining Temporal Mobility Patterns in London, Singapore and Beijing Using Smart-Card Data.
    Zhong C; Batty M; Manley E; Wang J; Wang Z; Chen F; Schmitt G
    PLoS One; 2016; 11(2):e0149222. PubMed ID: 26872333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Commute patterns, residential traffic-related air pollution, and lung cancer risk in the prospective UK Biobank cohort study.
    Wong JYY; Jones RR; Breeze C; Blechter B; Rothman N; Hu W; Ji BT; Bassig BA; Silverman DT; Lan Q
    Environ Int; 2021 Oct; 155():106698. PubMed ID: 34139591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.