These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38504890)

  • 1. Effect of extracellular polymeric substances on the colony size and morphological changes of
    Pan J; Yang Z; Hu N; Xiao B; Wang C; Wu X; Yang T
    Front Plant Sci; 2024; 15():1367205. PubMed ID: 38504890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the relationship between colony formation and extracellular polymeric substances (EPS) composition of the cyanobacterium Microcystis spp.
    Xiao M; Li M; Duan P; Qu Z; Wu H
    Harmful Algae; 2019 Mar; 83():34-41. PubMed ID: 31097254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colony formation in the cyanobacterium Microcystis.
    Xiao M; Li M; Reynolds CS
    Biol Rev Camb Philos Soc; 2018 Aug; 93(3):1399-1420. PubMed ID: 29473286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of different types of extracellular polysaccharides isolated from cyanobacterial blooms on the colony formation of unicellular Microcystis aeruginosa.
    Omori K; Datta T; Amano Y; Machida M
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3741-3750. PubMed ID: 30539395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissolved organic matter, calcium ion and extracellular polymeric substances on living associated bacteria of Microcystis colony are crucial for unicellular Microcystis to efficiently form colonies.
    Yang C; Ding M; Hou K; Feng J; Li X; Pan X; Yang C; Zhang X; Guo J; Dai X
    J Hazard Mater; 2024 Jun; 471():134352. PubMed ID: 38677120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of the physicochemical properties of extracellular polymeric substances (EPS) from Microcystis aeruginosa in response to microplastics.
    Ye T; Yang A; Wang Y; Song N; Wang P; Xu H
    Environ Pollut; 2022 Dec; 315():120354. PubMed ID: 36215775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Microcystis morphotypes: Implications for colony formation and intraspecific variation.
    Duan Z; Tan X; Parajuli K; Zhang D; Wang Y
    Harmful Algae; 2019 Dec; 90():101701. PubMed ID: 31806163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review: a meta-analysis comparing cell-division and cell-adhesion in Microcystis colony formation.
    Xiao M; Willis A; Burford MA; Li M
    Harmful Algae; 2017 Jul; 67():85-91. PubMed ID: 28755723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation.
    Xu H; Jiang H; Yu G; Yang L
    Chemosphere; 2014 Dec; 117():815-22. PubMed ID: 25465953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Humic acid inhibits colony formation of the cyanobacterium Microcystis at high level of iron.
    Ma X; Li M; Jiang E; Pan B; Gao L
    Chemosphere; 2021 Oct; 281():130742. PubMed ID: 34000652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shift of calcium-induced Microcystis aeruginosa colony formation mechanism: From cell adhesion to cell division.
    Huang X; Gu P; Wu H; Wang Z; Huang S; Luo X; Zheng Z
    Environ Pollut; 2022 Nov; 313():119997. PubMed ID: 35995295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colony formation in two Microcystis morphotypes: Effects of temperature and nutrient availability.
    Duan Z; Tan X; Parajuli K; Upadhyay S; Zhang D; Shu X; Liu Q
    Harmful Algae; 2018 Feb; 72():14-24. PubMed ID: 29413381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-regulatory role of Microcystis colony cell volume and compactness in buoyancy during the growth stage.
    Wu H; Yang T; Wang C; Tian C; Donde OO; Xiao B; Wu X
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):42313-42323. PubMed ID: 32651788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium promotes formation of large colonies of the cyanobacterium Microcystis by enhancing cell-adhesion.
    Chen H; Lürling M
    Harmful Algae; 2020 Feb; 92():101768. PubMed ID: 32113593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production and composition of extracellular polymeric substances by a unicellular strain and natural colonies of Microcystis: Impact of salinity and nutrient stress.
    Reignier O; Bormans M; Marchand L; Sinquin C; Amzil Z; Zykwinska A; Briand E
    Environ Microbiol Rep; 2023 Dec; 15(6):783-796. PubMed ID: 37697704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis.
    Xu H; Cai H; Yu G; Jiang H
    Water Res; 2013 Apr; 47(6):2005-14. PubMed ID: 23395483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis under high turbulent mixing.
    Li M; Xiao M; Zhang P; Hamilton DP
    Water Res; 2018 Sep; 141():340-348. PubMed ID: 29804020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid flotation of
    Yang T; Pan J; Wu H; Tian C; Wang C; Xiao B; Pan M; Wu X
    Front Plant Sci; 2024; 15():1367680. PubMed ID: 38633455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp.
    Gan N; Xiao Y; Zhu L; Wu Z; Liu J; Hu C; Song L
    Environ Microbiol; 2012 Mar; 14(3):730-42. PubMed ID: 22040118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of light-mediated variations of colony morphology on the buoyancy regulation of Microcystis colonies.
    Xu G; Zhang Y; Yang T; Wu H; Lorke A; Pan M; Xiao B; Wu X
    Water Res; 2023 May; 235():119839. PubMed ID: 36924554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.