These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38505149)

  • 41. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.
    Dong H; Zhang C; Deng J; Jiang Z; Zhang L; Cheng Y; Hou K; Tang L; Zeng G
    Water Res; 2018 May; 135():1-10. PubMed ID: 29438739
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remediation of chlorinated ethenes in fractured sandstone by natural and enhanced biotic and abiotic processes: A crushed rock microcosm study.
    Yu R; Andrachek RG; Lehmicke LG; Freedman DL
    Sci Total Environ; 2018 Jun; 626():497-506. PubMed ID: 29353790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chromium(VI) removal by mechanochemically sulfidated zero valent iron and its effect on dechlorination of trichloroethene as a co-contaminant.
    Zou H; Hu E; Yang S; Gong L; He F
    Sci Total Environ; 2019 Feb; 650(Pt 1):419-426. PubMed ID: 30199686
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced removal of cis-1,2-dichloroethene and vinyl chloride in groundwater using ball-milled sulfur- and biochar-modified zero-valent iron: From the laboratory to the field.
    Qian L; Li H; Wei Z; Liang C; Dong X; Lin D; Chen M
    Environ Pollut; 2023 Nov; 336():122424. PubMed ID: 37604391
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergetic degradation of Fe/Cu/C for groundwater polluted by trichloroethylene.
    Zhang W; Li L; Lin K; Xiong B; Li B; Lu S; Guo M; Cui X
    Water Sci Technol; 2012; 65(12):2258-64. PubMed ID: 22643424
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.
    Cretnik S; Bernstein A; Shouakar-Stash O; Löffler F; Elsner M
    Molecules; 2014 May; 19(5):6450-73. PubMed ID: 24853618
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sulfidation of Zero-Valent Iron by Direct Reaction with Elemental Sulfur in Water: Efficiencies, Mechanism, and Dechlorination of Trichloroethylene.
    Cai S; Chen B; Qiu X; Li J; Tratnyek PG; He F
    Environ Sci Technol; 2021 Jan; 55(1):645-654. PubMed ID: 33302625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Key role of hydrogen atoms in the preparation of sulfidated zero valent iron.
    Fan B; Chen S; Zhu C; Zhu F; Huang D; Si D; Zhou B; Zhou D; He F; Gao S
    Water Res; 2024 Jun; 256():121573. PubMed ID: 38608618
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characteristics of trichloroethene (TCE) dechlorination in seawater over a granulated zero-valent iron.
    Shih YJ; Hsia KF; Chen CW; Chen CF; Dong CD
    Chemosphere; 2019 Feb; 216():40-47. PubMed ID: 30359915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elemental sulfur generated in situ from Fe(III) and sulfide promotes sulfidation of microscale zero-valent iron for superior Cr(VI) removal.
    Dai Y; Duan L; Dong Y; Zhao W; Zhao S
    J Hazard Mater; 2022 Aug; 436():129256. PubMed ID: 35739775
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sulfidation extent of nanoscale zerovalent iron controls selectivity and reactivity with mixed chlorinated hydrocarbons in natural groundwater.
    Mangayayam MC; Perez JPH; Alonso-de-Linaje V; Dideriksen K; Benning LG; Tobler DJ
    J Hazard Mater; 2022 Jun; 431():128534. PubMed ID: 35259697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transformation and carbon isotope fractionation of tetra- and trichloroethene to trans-dichloroethene by Dehalococcoides sp. strain CBDB1.
    Marco-Urrea E; Nijenhuis I; Adrian L
    Environ Sci Technol; 2011 Feb; 45(4):1555-62. PubMed ID: 21214238
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chlorine isotope fractionation during reductive dechlorination of chlorinated ethenes by anaerobic bacteria.
    Numata M; Nakamura N; Koshikawa H; Terashima Y
    Environ Sci Technol; 2002 Oct; 36(20):4389-94. PubMed ID: 12387413
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth.
    Holliger C; Schraa G; Stams AJ; Zehnder AJ
    Appl Environ Microbiol; 1993 Sep; 59(9):2991-7. PubMed ID: 8215370
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Performance and Mechanisms of Sulfidated Nanoscale Zero-Valent Iron Materials for Toxic TCE Removal from the Groundwater.
    Lang Y; Yu Y; Zou H; Ye J; Zhang S
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627834
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acceleration of microiron-based dechlorination in water by contact with fibrous activated carbon.
    Vogel M; Kopinke FD; Mackenzie K
    Sci Total Environ; 2019 Apr; 660():1274-1282. PubMed ID: 30743922
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions.
    Cho Y; Choi SI
    Chemosphere; 2010 Nov; 81(7):940-5. PubMed ID: 20723967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reductive dechlorination of PCE and TCE by vitamin B12 and ZVMs.
    Kim YH; Carraway ER
    Environ Technol; 2002 Oct; 23(10):1135-45. PubMed ID: 12465840
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study.
    Huang KC; Hoag GE; Chheda P; Woody BA; Dobbs GM
    J Hazard Mater; 2001 Oct; 87(1-3):155-69. PubMed ID: 11566407
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergistic Zerovalent Iron (Fe
    Rangan SM; Mouti A; LaPat-Polasko L; Lowry GV; Krajmalnik-Brown R; Delgado AG
    Environ Sci Technol; 2020 Nov; 54(22):14422-14431. PubMed ID: 33151674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.