These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 38505272)

  • 41. Pecularities and applications of aryl-alcohol oxidases from fungi.
    Urlacher VB; Koschorreck K
    Appl Microbiol Biotechnol; 2021 May; 105(10):4111-4126. PubMed ID: 33997930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct Comparison of the Enzymatic Characteristics and Superoxide Production of the Four Aldehyde Oxidase Enzymes Present in Mouse.
    Kücükgöze G; Terao M; Garattini E; Leimkühler S
    Drug Metab Dispos; 2017 Aug; 45(8):947-955. PubMed ID: 28526768
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Zirconium-catalyzed asymmetric Kabachnik-Fields reactions of aromatic and aliphatic aldehydes.
    Dai Y; Zheng L; Chakraborty D; Borhan B; Wulff WD
    Chem Sci; 2021 Sep; 12(37):12333-12345. PubMed ID: 34603663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Myoglobin-Catalyzed Olefination of Aldehydes.
    Tyagi V; Fasan R
    Angew Chem Int Ed Engl; 2016 Feb; 55(7):2512-6. PubMed ID: 26765247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry.
    Bagha UK; Satpathy JK; Mukherjee G; Sastri CV; de Visser SP
    Org Biomol Chem; 2021 Mar; 19(9):1879-1899. PubMed ID: 33406196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Volatile molecular markers of VOO Thermo-oxidation: Effect of heating processes, macronutrients composition, and olive ripeness on the new emitted aldehydic compounds.
    Oueslati I; Manaï H; Madrigal-Martínez M; Martínez-Cañas MA; Sánchez-Casas J; Zarrouk M; Flamini G
    Food Res Int; 2018 Apr; 106():654-665. PubMed ID: 29579972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction.
    Pomar F; Merino F; Barceló AR
    Protoplasma; 2002 Oct; 220(1-2):17-28. PubMed ID: 12417933
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Basidiomycota strains as whole-cell biocatalysts for the synthesis of high-value natural benzaldehydes.
    Serra S; Marzorati S; Szczepańska E; Strzała T; Boratyński F
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):113. PubMed ID: 38212964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional evolution of biosynthetic enzymes that produce plant volatiles.
    Koeduka T
    Biosci Biotechnol Biochem; 2018 Feb; 82(2):192-199. PubMed ID: 29338642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence for a tungsten-stimulated aldehyde dehydrogenase activity of Desulfovibrio simplex that oxidizes aliphatic and aromatic aldehydes with flavins as coenzymes.
    Zellner G; Jargon A
    Arch Microbiol; 1997 Dec; 168(6):480-5. PubMed ID: 9385139
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Developments in Chemical Synthesis with Biocatalysts in Ionic Liquids.
    Potdar MK; Kelso GF; Schwarz L; Zhang C; Hearn MT
    Molecules; 2015 Sep; 20(9):16788-816. PubMed ID: 26389873
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis of chiral functional polyhydroxylated arenes via Mukaiyama aldol reaction from Perlin aldehydes.
    Halder S; Moktan S; Sreeram V; Kancharla PK
    Carbohydr Res; 2024 Jan; 535():109004. PubMed ID: 38091696
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering an Alcohol-Forming Fatty Acyl-CoA Reductase for Aldehyde and Hydrocarbon Biosynthesis in
    Foo JL; Rasouliha BH; Susanto AV; Leong SSJ; Chang MW
    Front Bioeng Biotechnol; 2020; 8():585935. PubMed ID: 33123518
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Aromatic aldehydes at the active site of aldehyde oxidoreductase from Desulfovibrio gigas: reactivity and molecular details of the enzyme-substrate and enzyme-product interaction.
    Correia HD; Marangon J; Brondino CD; Moura JJ; Romão MJ; González PJ; Santos-Silva T
    J Biol Inorg Chem; 2015 Mar; 20(2):219-29. PubMed ID: 25261288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aliphatic Aldehyde Detection and Adsorption by Nonporous Adaptive Pillar[4]arene[1]quinone Crystals with Vapochromic Behavior.
    Li E; Jie K; Zhou Y; Zhao R; Zhang B; Wang Q; Liu J; Huang F
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23147-23153. PubMed ID: 29916689
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates.
    Frömmel J; Tarkowski P; Kopečný D; Šebela M
    N Biotechnol; 2016 Sep; 33(5 Pt B):666-675. PubMed ID: 26703808
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Volatile Short-Chain Aliphatic Aldehydes Act as Taste Modulators through the Orally Expressed Calcium-Sensing Receptor CaSR.
    Kitajima S; Maruyama Y; Kuroda M
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375140
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial engineering for aldehyde synthesis.
    Kunjapur AM; Prather KL
    Appl Environ Microbiol; 2015 Mar; 81(6):1892-901. PubMed ID: 25576610
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds.
    Santi M; Sancineto L; Nascimento V; Braun Azeredo J; Orozco EVM; Andrade LH; Gröger H; Santi C
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498198
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes.
    Knaus T; Mutti FG; Humphreys LD; Turner NJ; Scrutton NS
    Org Biomol Chem; 2015 Jan; 13(1):223-33. PubMed ID: 25372591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.