These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38505392)

  • 1. Recycling of metals from LiFePO
    Li X; Benstead M; Peeters N; Binnemans K
    RSC Adv; 2024 Mar; 14(13):9262-9272. PubMed ID: 38505392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of critical metals from spent Li-ion batteries: Sequential leaching, precipitation, and cobalt-nickel separation using Cyphos IL104.
    Ilyas S; Ranjan Srivastava R; Singh VK; Chi R; Kim H
    Waste Manag; 2022 Dec; 154():175-186. PubMed ID: 36244206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Extraction of Critical Metals from Spent Lithium-Ion Batteries.
    Wang M; Liu K; Xu Z; Dutta S; Valix M; Alessi DS; Huang L; Zimmerman JB; Tsang DCW
    Environ Sci Technol; 2023 Mar; 57(9):3940-3950. PubMed ID: 36800282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective leaching process for efficient and rapid recycling of spent lithium iron phosphate batteries.
    Xiong Y; Guo Z; Mei T; Han Y; Wang Y; Xiong X; Tang Y; Wang X
    Waste Manag Res; 2023 Nov; 41(11):1613-1621. PubMed ID: 37102334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clean and sustainable method for recycling of lithium from spent lithium iron phosphate battery powder by using formic acid and oxygen.
    Zhao T; Mahandra H; Choi Y; Li W; Zhang Z; Zhao Z; Chen A
    Sci Total Environ; 2024 Apr; 920():170930. PubMed ID: 38354790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sustainable closed-loop method of selective oxidation leaching and regeneration for lithium iron phosphate cathode materials from spent batteries.
    Gong R; Li C; Meng Q; Dong P; Zhang Y; Zhang B; Yan J; Li Y
    J Environ Manage; 2022 Oct; 319():115740. PubMed ID: 35868192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Regeneration of Degraded LiFePO
    Li C; Gong R; Zhang Y; Meng Q; Dong P
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of Metals from Electronic Waste-Printed Circuit Boards by Ionic Liquids, DESs and Organophosphorous-Based Acid Extraction.
    Łukomska A; Wiśniewska A; Dąbrowski Z; Lach J; Wróbel K; Kolasa D; Domańska U
    Molecules; 2022 Aug; 27(15):. PubMed ID: 35956933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency leaching process for selective leaching of lithium from spent lithium iron phosphate.
    Li G; Chen Y; Wu M; Xu Y; Li X; Tian M
    Waste Manag; 2024 Dec; 190():141-148. PubMed ID: 39317059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries.
    Liu X; Huang K; Xiong H; Dong H
    Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries.
    Yang Y; Lei S; Song S; Sun W; Wang L
    Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective recovery of Li and FePO
    Kumar J; Shen X; Li B; Liu H; Zhao J
    Waste Manag; 2020 Jul; 113():32-40. PubMed ID: 32505109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching.
    Wu C; Li B; Yuan C; Ni S; Li L
    Waste Manag; 2019 Jun; 93():153-161. PubMed ID: 31235052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiently Removing Heavy Metals from High-Salinity Wastewater via Ionic Liquid-Based Aqueous Biphasic Systems.
    Cai D; Zhang G; Hu D; Li J; Wang M; Zhang Y; Yuan J
    ACS Omega; 2023 Aug; 8(34):30898-30905. PubMed ID: 37663460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of ionic-liquid-based acidic aqueous biphasic system formation.
    Schaeffer N; Passos H; Gras M; Mogilireddy V; Leal JP; Pérez-Sánchez G; Gomes JRB; Billard I; Papaiconomou N; Coutinho JAP
    Phys Chem Chem Phys; 2018 Apr; 20(15):9838-9846. PubMed ID: 29610796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical-molar Fe
    Dai Y; Xu Z; Hua D; Gu H; Wang N
    J Hazard Mater; 2020 Sep; 396():122707. PubMed ID: 32353734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process.
    Gao W; Zhang X; Zheng X; Lin X; Cao H; Zhang Y; Sun Z
    Environ Sci Technol; 2017 Feb; 51(3):1662-1669. PubMed ID: 28081362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.