These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 38505404)

  • 41. Can auditory brain stem response accurately reflect the cochlear function?
    Ding D; Zhang J; Li W; Li D; Yu J; Wu X; Qi W; Liu F; Jiang H; Shi H; Sun H; Li P; Huang W; Salvi R
    J Neurophysiol; 2020 Dec; 124(6):1667-1675. PubMed ID: 33026904
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Frequency of greatest temporary hearing threshold shift in harbor porpoises (Phocoena phocoena) depends on the noise level.
    Kastelein RA; Schop J; Gransier R; Hoek L
    J Acoust Soc Am; 2014 Sep; 136(3):1410. PubMed ID: 25190414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Noise-induced hearing loss correlates with inner ear hair cell decrease in larval zebrafish.
    Lara RA; Breitzler L; Lau IH; Gordillo-Martinez F; Chen F; Fonseca PJ; Bass AH; Vasconcelos RO
    J Exp Biol; 2022 Apr; 225(7):. PubMed ID: 35258623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Histological development and integration of the Zebrafish Weberian apparatus.
    Bird NC; Richardson SS; Abels JR
    Dev Dyn; 2020 Aug; 249(8):998-1017. PubMed ID: 32243643
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sex-specific differences in agonistic behaviour, sound production and auditory sensitivity in the callichthyid armoured catfish Megalechis thoracata.
    Hadjiaghai O; Ladich F
    PLoS One; 2015; 10(3):e0121219. PubMed ID: 25775458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio).
    Higgs DM; Rollo AK; Souza MJ; Popper AN
    J Acoust Soc Am; 2003 Feb; 113(2):1145-54. PubMed ID: 12597208
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The ontogenetic development of auditory sensitivity, vocalization and acoustic communication in the labyrinth fish Trichopsis vittata.
    Wysocki LE; Ladich F
    J Comp Physiol A; 2001 Apr; 187(3):177-87. PubMed ID: 11401197
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling whale audiograms: effects of bone mass on high-frequency hearing.
    Hemilä S; Nummela S; Reuter T
    Hear Res; 2001 Jan; 151(1-2):221-226. PubMed ID: 11124467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of the stapedius reflex in poststimulatory auditory fatigue.
    Zakrisson JE
    Acta Otolaryngol; 1975; 79(1-2):1-10. PubMed ID: 1146526
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus.
    Paul BT; Bruce IC; Roberts LE
    Hear Res; 2017 Feb; 344():170-182. PubMed ID: 27888040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mature middle and inner ears express Chd7 and exhibit distinctive pathologies in a mouse model of CHARGE syndrome.
    Hurd EA; Adams ME; Layman WS; Swiderski DL; Beyer LA; Halsey KE; Benson JM; Gong TW; Dolan DF; Raphael Y; Martin DM
    Hear Res; 2011 Dec; 282(1-2):184-95. PubMed ID: 21875659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Noise-Induced Hearing Loss in Mice: Effects of High and Low Levels of Noise Trauma in CBA Mice.
    Amanipour RM; Zhu X; Duvey G; Celanire S; Walton JP; Frisina RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1210-1213. PubMed ID: 30440607
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Audiograms of three subterranean rodent species (genus
    Gerhardt P; Henning Y; Begall S; Malkemper EP
    J Exp Biol; 2017 Dec; 220(Pt 23):4377-4382. PubMed ID: 29025871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporary hearing threshold shift in a harbor porpoise (Phocoena phocoena) after exposure to multiple airgun sounds.
    Kastelein RA; Helder-Hoek L; Van de Voorde S; von Benda-Beckmann AM; Lam FA; Jansen E; de Jong CAF; Ainslie MA
    J Acoust Soc Am; 2017 Oct; 142(4):2430. PubMed ID: 29092610
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Histopathological differences between temporary and permanent threshold shift.
    Nordmann AS; Bohne BA; Harding GW
    Hear Res; 2000 Jan; 139(1-2):13-30. PubMed ID: 10601709
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of exposure to sonar playback sounds (3.5 - 4.1 kHz) on harbor porpoise (Phocoena phocoena) hearing.
    Kastelein RA; Helder-Hoek L; Van de Voorde S
    J Acoust Soc Am; 2017 Oct; 142(4):1965. PubMed ID: 29092538
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water?
    Smith ME; Kane AS; Popper AN
    J Exp Biol; 2004 Sep; 207(Pt 20):3591-602. PubMed ID: 15339955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: a 3-year follow-up study.
    Job A; Raynal M; Kossowski M; Studler M; Ghernaouti C; Baffioni-Venturi A; Roux A; Darolles C; Guelorget A
    Hear Res; 2009 May; 251(1-2):10-6. PubMed ID: 19249340
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporary threshold shifts at 1500 and 2000 Hz induced by loud voice signals communicated through earphones in the pinball industry.
    Idota N; Horie S; Tsutsui T; Inoue J
    Ann Occup Hyg; 2010 Oct; 54(7):842-9. PubMed ID: 20584863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.