These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 38505520)

  • 1. Insights into the cell fate decision-making processes from chromosome structural reorganizations.
    Chu X; Wang J
    Biophys Rev (Melville); 2022 Dec; 3(4):041402. PubMed ID: 38505520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deciphering the molecular mechanism of the cancer formation by chromosome structural dynamics.
    Chu X; Wang J
    PLoS Comput Biol; 2021 Nov; 17(11):e1009596. PubMed ID: 34752443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic Chromosomal Structural and Dynamical Origin of Cell Differentiation and Reprogramming.
    Chu X; Wang J
    Adv Sci (Weinh); 2020 Oct; 7(20):2001572. PubMed ID: 33101859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and Pathways of Chromosome Structural Organizations during Cell Transdifferentiation.
    Chu X; Wang J
    JACS Au; 2022 Jan; 2(1):116-127. PubMed ID: 35098228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational state switching and pathways of chromosome dynamics in cell cycle.
    Chu X; Wang J
    Appl Phys Rev; 2020 Sep; 7(3):031403. PubMed ID: 32884608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the large-scale chromosome structural dynamics during the mitosis-to-G1 phase transition of cell cycle.
    Chu X; Wang J
    Open Biol; 2023 Nov; 13(11):230175. PubMed ID: 37907089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale data-driven and physics-based models offer insights into the relationships among the structures, dynamics, and functions of chromosomes.
    Feng C; Wang J; Chu X
    J Mol Cell Biol; 2023 Nov; 15(6):. PubMed ID: 37365687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying Chromosome Structural Reorganizations during Differentiation, Reprogramming, and Transdifferentiation.
    Chu X; Wang J
    Phys Rev Lett; 2022 Aug; 129(6):068102. PubMed ID: 36018639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Cell States to Cell Fates: Control of Cell State Transitions.
    Tsuchiya M; Giuliani A; Brazhnik P
    Methods Mol Biol; 2024; 2745():137-162. PubMed ID: 38060184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curl Flux as a Dynamical Origin of the Bifurcations/Phase Transitions of Nonequilibrium Systems: Cell Fate Decision Making.
    Xu L; Wang J
    J Phys Chem B; 2020 Apr; 124(13):2549-2559. PubMed ID: 32118436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detailed molecular cytogenetic characterisation of the myeloid cell line U937 reveals the fate of homologous chromosomes and shows that centromere capture is a feature of genome instability.
    MacKinnon RN; Peverall J; Campbell LJ; Wall M
    Mol Cytogenet; 2020 Dec; 13(1):50. PubMed ID: 33317567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures.
    Brahmachari S; Marko JF
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24956-24965. PubMed ID: 31757850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements.
    Keuper K; Wieland A; Räschle M; Storchova Z
    DNA Repair (Amst); 2021 Nov; 107():103207. PubMed ID: 34425515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uncovering the Quantitative Relationships Among Chromosome Fluctuations, Epigenetics, and Gene Expressions of Transdifferentiation on Waddington Landscape.
    Chu WT; Chu X; Wang J
    Adv Sci (Weinh); 2022 Apr; 9(10):e2103617. PubMed ID: 35104056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting transition cells from single-cell transcriptome data through multiscale stochastic dynamics.
    Zhou P; Wang S; Li T; Nie Q
    Nat Commun; 2021 Sep; 12(1):5609. PubMed ID: 34556644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin module inference on cellular trajectories identifies key transition points and poised epigenetic states in diverse developmental processes.
    Roy S; Sridharan R
    Genome Res; 2017 Jul; 27(7):1250-1262. PubMed ID: 28424352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering landscape dynamics of cell fate decision via a Lyapunov method.
    Li C; Dong J; Li J; Zhu W; Wang P; Yao Y; Wei C; Han H
    Comput Biol Chem; 2022 Jun; 98():107689. PubMed ID: 35537363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Markov state models provide insights into dynamic modulation of protein function.
    Shukla D; Hernández CX; Weber JK; Pande VS
    Acc Chem Res; 2015 Feb; 48(2):414-22. PubMed ID: 25625937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Landscape and flux quantify the stochastic transition dynamics for p53 cell fate decision.
    Ye L; Song Z; Li C
    J Chem Phys; 2021 Jan; 154(2):025101. PubMed ID: 33445890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.