These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38505995)

  • 21. CATH: comprehensive structural and functional annotations for genome sequences.
    Sillitoe I; Lewis TE; Cuff A; Das S; Ashford P; Dawson NL; Furnham N; Laskowski RA; Lee D; Lees JG; Lehtinen S; Studer RA; Thornton J; Orengo CA
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D376-81. PubMed ID: 25348408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SCOPe: improvements to the structural classification of proteins - extended database to facilitate variant interpretation and machine learning.
    Chandonia JM; Guan L; Lin S; Yu C; Fox NK; Brenner SE
    Nucleic Acids Res; 2022 Jan; 50(D1):D553-D559. PubMed ID: 34850923
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assigning genomic sequences to CATH.
    Pearl FM; Lee D; Bray JE; Sillitoe I; Todd AE; Harrison AP; Thornton JM; Orengo CA
    Nucleic Acids Res; 2000 Jan; 28(1):277-82. PubMed ID: 10592246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel machine learning approaches revolutionize protein knowledge.
    Bordin N; Dallago C; Heinzinger M; Kim S; Littmann M; Rauer C; Steinegger M; Rost B; Orengo C
    Trends Biochem Sci; 2023 Apr; 48(4):345-359. PubMed ID: 36504138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CATH extended protein-family database: providing structural annotations for genome sequences.
    Pearl FM; Lee D; Bray JE; Buchan DW; Shepherd AJ; Orengo CA
    Protein Sci; 2002 Feb; 11(2):233-44. PubMed ID: 11790833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Classifying a protein in the CATH database of domain structures.
    Orengo CA; Martin AM; Hutchinson G; Jones S; Jones DT; Michie AD; Swindells MB; Thornton JM
    Acta Crystallogr D Biol Crystallogr; 1998 Nov; 54(Pt 6 Pt 1):1155-67. PubMed ID: 10089492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria.
    Gao M; Nakajima An D; Skolnick J
    Elife; 2022 Dec; 11():. PubMed ID: 36576775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated assignment of SCOP and CATH protein structure classifications from FSSP scores.
    Getz G; Vendruscolo M; Sachs D; Domany E
    Proteins; 2002 Mar; 46(4):405-15. PubMed ID: 11835515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessing Fairness of AlphaFold2 Prediction of Protein 3D Structures.
    Abbas U; Chen J; Shao Q
    bioRxiv; 2023 May; ():. PubMed ID: 37293014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of a structural alphabet to find compatible folds for amino acid sequences.
    Mahajan S; de Brevern AG; Sanejouand YH; Srinivasan N; Offmann B
    Protein Sci; 2015 Jan; 24(1):145-53. PubMed ID: 25297700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Explainable protein function annotation using local structure embeddings.
    Derry A; Altman RB
    bioRxiv; 2023 Oct; ():. PubMed ID: 37905033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ab initio and homology based prediction of protein domains by recursive neural networks.
    Walsh I; Martin AJ; Mooney C; Rubagotti E; Vullo A; Pollastri G
    BMC Bioinformatics; 2009 Jun; 10():195. PubMed ID: 19558651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing strategies for improved superfamily recognition.
    Sillitoe I; Dibley M; Bray J; Addou S; Orengo C
    Protein Sci; 2005 Jul; 14(7):1800-10. PubMed ID: 15937274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural alphabets for protein structure classification: a comparison study.
    Le Q; Pollastri G; Koehl P
    J Mol Biol; 2009 Mar; 387(2):431-50. PubMed ID: 19135454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional Structure Databases of Biological Macromolecules.
    Waman VP; Orengo C; Kleywegt GJ; Lesk AM
    Methods Mol Biol; 2022; 2449():43-91. PubMed ID: 35507259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards an automatic classification of protein structural domains based on structural similarity.
    Sam V; Tai CH; Garnier J; Gibrat JF; Lee B; Munson PJ
    BMC Bioinformatics; 2008 Jan; 9():74. PubMed ID: 18237410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins.
    Ben Chorin A; Masrati G; Kessel A; Narunsky A; Sprinzak J; Lahav S; Ashkenazy H; Ben-Tal N
    Protein Sci; 2020 Jan; 29(1):258-267. PubMed ID: 31702846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CATH--a hierarchic classification of protein domain structures.
    Orengo CA; Michie AD; Jones S; Jones DT; Swindells MB; Thornton JM
    Structure; 1997 Aug; 5(8):1093-108. PubMed ID: 9309224
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Customised fragments libraries for protein structure prediction based on structural class annotations.
    Abbass J; Nebel JC
    BMC Bioinformatics; 2015 Apr; 16(1):136. PubMed ID: 25925397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.