These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38505995)

  • 41. CATH--a hierarchic classification of protein domain structures.
    Orengo CA; Michie AD; Jones S; Jones DT; Swindells MB; Thornton JM
    Structure; 1997 Aug; 5(8):1093-108. PubMed ID: 9309224
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Customised fragments libraries for protein structure prediction based on structural class annotations.
    Abbass J; Nebel JC
    BMC Bioinformatics; 2015 Apr; 16(1):136. PubMed ID: 25925397
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.
    Lewis TE; Sillitoe I; Andreeva A; Blundell TL; Buchan DW; Chothia C; Cuff A; Dana JM; Filippis I; Gough J; Hunter S; Jones DT; Kelley LA; Kleywegt GJ; Minneci F; Mitchell A; Murzin AG; Ochoa-Montaño B; Rackham OJ; Smith J; Sternberg MJ; Velankar S; Yeats C; Orengo C
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D499-507. PubMed ID: 23203986
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Image-based effective feature generation for protein structural class and ligand binding prediction.
    Sadique N; Ahmed AAN; Islam MT; Pervage MN; Shatabda S
    PeerJ Comput Sci; 2020; 6():e253. PubMed ID: 33816905
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DDOMAIN: Dividing structures into domains using a normalized domain-domain interaction profile.
    Zhou H; Xue B; Zhou Y
    Protein Sci; 2007 May; 16(5):947-55. PubMed ID: 17456745
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The amino acid alphabet and the architecture of the protein sequence-structure map. I. Binary alphabets.
    Ferrada E
    PLoS Comput Biol; 2014 Dec; 10(12):e1003946. PubMed ID: 25473967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. SCPRED: accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences.
    Kurgan L; Cios K; Chen K
    BMC Bioinformatics; 2008 May; 9():226. PubMed ID: 18452616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A systematic comparison of protein structure classifications: SCOP, CATH and FSSP.
    Hadley C; Jones DT
    Structure; 1999 Sep; 7(9):1099-112. PubMed ID: 10508779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SCOPe: Manual Curation and Artifact Removal in the Structural Classification of Proteins - extended Database.
    Chandonia JM; Fox NK; Brenner SE
    J Mol Biol; 2017 Feb; 429(3):348-355. PubMed ID: 27914894
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The CATH classification revisited--architectures reviewed and new ways to characterize structural divergence in superfamilies.
    Cuff AL; Sillitoe I; Lewis T; Redfern OC; Garratt R; Thornton J; Orengo CA
    Nucleic Acids Res; 2009 Jan; 37(Database issue):D310-4. PubMed ID: 18996897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparison of SCOP and CATH with respect to domain-domain interactions.
    Jefferson ER; Walsh TP; Barton GJ
    Proteins; 2008 Jan; 70(1):54-62. PubMed ID: 17634986
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class.
    Eisenhaber F; Frömmel C; Argos P
    Proteins; 1996 Jun; 25(2):169-79. PubMed ID: 8811733
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High quality protein sequence alignment by combining structural profile prediction and profile alignment using SABER-TOOTH.
    Teichert F; Minning J; Bastolla U; Porto M
    BMC Bioinformatics; 2010 May; 11():251. PubMed ID: 20470364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduced amino acid alphabets exhibit an improved sensitivity and selectivity in fold assignment.
    Peterson EL; Kondev J; Theriot JA; Phillips R
    Bioinformatics; 2009 Jun; 25(11):1356-62. PubMed ID: 19351620
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CATHe: detection of remote homologues for CATH superfamilies using embeddings from protein language models.
    Nallapareddy V; Bordin N; Sillitoe I; Heinzinger M; Littmann M; Waman VP; Sen N; Rost B; Orengo C
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36648327
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The history of the CATH structural classification of protein domains.
    Sillitoe I; Dawson N; Thornton J; Orengo C
    Biochimie; 2015 Dec; 119():209-17. PubMed ID: 26253692
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing Protein Function Through Structural Similarities with CATH.
    Dawson NL; Orengo C; Gáspári Z
    Methods Mol Biol; 2020; 2112():43-57. PubMed ID: 32006277
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A rapid classification protocol for the CATH Domain Database to support structural genomics.
    Pearl FM; Martin N; Bray JE; Buchan DW; Harrison AP; Lee D; Reeves GA; Shepherd AJ; Sillitoe I; Todd AE; Thornton JM; Orengo CA
    Nucleic Acids Res; 2001 Jan; 29(1):223-7. PubMed ID: 11125098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach.
    Andorf C; Dobbs D; Honavar V
    BMC Bioinformatics; 2007 Aug; 8():284. PubMed ID: 17683567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.