BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38506054)

  • 1. Regional Variation in Cardiovascular Genes Enables a Tractable Genome Editing Strategy.
    Krysov VA; Wilson RH; Ten NS; Youlton N; De Jong HN; Sutton S; Huang Y; Reuter CM; Grove ME; Wheeler MT; Ashley EA; Parikh VN
    Circ Genom Precis Med; 2024 Apr; 17(2):e004370. PubMed ID: 38506054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of CRISPR-Cas9 prime editing for cardiovascular disease research and therapy.
    Bharucha N; Arias A; Karakikes I
    Curr Opin Cardiol; 2022 Sep; 37(5):413-418. PubMed ID: 35880456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Pathogenic Variants Correctable With CRISPR Base Editing Among Patients With Recessive Inherited Retinal Degeneration.
    Fry LE; McClements ME; MacLaren RE
    JAMA Ophthalmol; 2021 Mar; 139(3):319-328. PubMed ID: 33507217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo application of base and prime editing to treat inherited retinal diseases.
    Jo DH; Bae S; Kim HH; Kim JS; Kim JH
    Prog Retin Eye Res; 2023 May; 94():101132. PubMed ID: 36241547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 gene-editing strategies in cardiovascular cells.
    Vermersch E; Jouve C; Hulot JS
    Cardiovasc Res; 2020 Apr; 116(5):894-907. PubMed ID: 31584620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research.
    Li ZH; Wang J; Xu JP; Wang J; Yang X
    Mil Med Res; 2023 Mar; 10(1):12. PubMed ID: 36895064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translating genomic insights into cardiovascular medicine: Opportunities and challenges of CRISPR-Cas9.
    Zhang Y; Karakikes I
    Trends Cardiovasc Med; 2021 Aug; 31(6):341-348. PubMed ID: 32603681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of pathogenic variants in cancer genes using base editing screens with editing efficiency correction.
    Huang C; Li G; Wu J; Liang J; Wang X
    Genome Biol; 2021 Mar; 22(1):80. PubMed ID: 33691754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome scale analysis of pathogenic variants targetable for single base editing.
    Lavrov AV; Varenikov GG; Skoblov MY
    BMC Med Genomics; 2020 Sep; 13(Suppl 8):80. PubMed ID: 32948190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saturation genome editing-based functional evaluation and clinical classification of BRCA2 single nucleotide variants.
    Huang H; Hu C; Na J; Hart SN; Gnanaolivu RD; Abozaid M; Rao T; Tecleab YA; Pesaran T; Lyra PCM; Karam R; Yadav S; Domchek SM; de la Hoya M; Robson M; Mehine M; Bandlamudi C; Mandelker D; Monteiro ANA; Boddicker N; Chen W; Richardson ME; Couch FJ
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutation-specific reporter for optimization and enrichment of prime editing.
    Schene IF; Joore IP; Baijens JHL; Stevelink R; Kok G; Shehata S; Ilcken EF; Nieuwenhuis ECM; Bolhuis DP; van Rees RCM; Spelier SA; van der Doef HPJ; Beekman JM; Houwen RHJ; Nieuwenhuis EES; Fuchs SA
    Nat Commun; 2022 Mar; 13(1):1028. PubMed ID: 35232966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prime editing: advances and therapeutic applications.
    Zhao Z; Shang P; Mohanraju P; Geijsen N
    Trends Biotechnol; 2023 Aug; 41(8):1000-1012. PubMed ID: 37002157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prime Editing for Human Gene Therapy: Where Are We Now?
    Godbout K; Tremblay JP
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput PRIME-editing screens identify functional DNA variants in the human genome.
    Ren X; Yang H; Nierenberg JL; Sun Y; Chen J; Beaman C; Pham T; Nobuhara M; Takagi MA; Narayan V; Li Y; Ziv E; Shen Y
    Mol Cell; 2023 Dec; 83(24):4633-4645.e9. PubMed ID: 38134886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base Editing and Prime Editing: Potential Therapeutic Options for Rare and Common Diseases.
    Testa LC; Musunuru K
    BioDrugs; 2023 Jul; 37(4):453-462. PubMed ID: 37314680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving toward genome-editing therapies for cardiovascular diseases.
    Musunuru K
    J Clin Invest; 2022 Jan; 132(1):. PubMed ID: 34981785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curated multiple sequence alignment for the Adenomatous Polyposis Coli (APC) gene and accuracy of in silico pathogenicity predictions.
    Karabachev AD; Martini DJ; Hermel DJ; Solcz D; Richardson ME; Pesaran T; Sarkar IN; Greenblatt MS
    PLoS One; 2020; 15(8):e0233673. PubMed ID: 32750050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A detection method for the capture of genomic signatures: From disease diagnosis to genome editing.
    Benamozig O; Baudrier L; Billon P
    Methods Enzymol; 2021; 661():251-282. PubMed ID: 34776215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prime editing: current advances and therapeutic opportunities in human diseases.
    Fu Y; He X; Gao XD; Li F; Ge S; Yang Z; Fan X
    Sci Bull (Beijing); 2023 Dec; 68(24):3278-3291. PubMed ID: 37973465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comprehensive TALEN-Based Knockout Library for Generating Human-Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases.
    Karakikes I; Termglinchan V; Cepeda DA; Lee J; Diecke S; Hendel A; Itzhaki I; Ameen M; Shrestha R; Wu H; Ma N; Shao NY; Seeger T; Woo N; Wilson KD; Matsa E; Porteus MH; Sebastiano V; Wu JC
    Circ Res; 2017 May; 120(10):1561-1571. PubMed ID: 28246128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.